-
4th Ağustos 2008

Batı Dünyasında Batılı Bilginler

posted in BİLİM |

BİLİM İNSANLARI

BATILI BİLGİNLER (16-20. YY. )

ROGER BACON(12201292)

Leonardo da Vinci(1452-1519)

Copernicus(1473-1543)

Ambroise Pare(1510-1590)

Niccolo Tartaglia(1512)

Conrad Gesner(1516-1565)

Francis Bacon(1561-1626)

Galileo Galilei(1564-1642)

Kepler(1571-1630)

William Harvey(1578-1657)

René Descartes (1596-1650)

TORICELLİ(1608-1647)

Blaise Pascal(1623-1662)

Robert Boyle(1627 -1691)

Huygens(1629-1695)

Sir Isaac Newton(1642 -1727)

DENIS PAPIN(1647-1712)

FRANCLİN(1706-1790)

CAVENDİCH(1731-1810)

Lavoisier(1743 -1794)

VOLTA(1745-1827)

ROBERT FULTON(1765-1811)

JOHN DALTON(1766 -1844)

JAMES WATT(1769-)

AMPERE(1775-1836)

Avogadro(1776-1856)

Gauss(1777-1855)

Gay-Lussac(1778-1850)

Ohm(1789-1854)

FARADAY(1791-1867)

Charles Darwin(1809 -1882)

Louis Pasteur(1822 -1895)

Mendel(1822-1884)

Kelvin(1824-1907)

Maxwell(1831 -1879)

Alfred Nobel (1833-1896)

Röntgen(1845-1923)

Edison(1847-1931)

IVAN PAVLOV(1849-1936)

Becquerel(1852-1908)

Henri Poincarè(1854-1912)

Karl Pearson(1857-1936)

Max Planck(1858 -1947)

Marie Curie(1867-1937)

Rutherford(1871 -1937)

MARCONİ(1874-1937)

Albert Einstein(1879-1955)

Joule- James Prescott(1881–1889)

Niels Bohr(1885-1962)

Erwin Schrödinger(1887 -1961)

Alexander Friedman(1888-1925)

Edwin Hubble(18891953)

Jean Piaget(1896-1980)

Wolfgang Pauli(1900-1958)

Dennis Gabor(1900-1979)

Charles FRANCIS Richter (1900 – 1985)

WERNER Heisenberg(1901 -1976)

Enrico Fermi(1901-1954)

Alfred Kastler(1902-1984)

Chen Ning Yang(1922-)

Donald Arthur Glaser(1926-)

Stephen Hawking(1942-)

 

ROGER BACON

Roger Bacon (12201292) İngiliz bilim adamı ve filozof. “Deneysel bilim” yolunda çaba harcamış olan Bacon, çağdaş bilimin deneysel yaklaşımının tarihsel bakımdan erken olgunlaşmış bir temsilcisi olarak kabul edilir. İnsanın bilgisizliğinin nedenleri üzerinde duran Bacon, otoriteye dayanmanın, geleneğin etkisinin, önyargıların ve kişinin cehaletini saklayan sözde bilgeliğin, insanı hakikate ulaşmaktan alıkoyduğunu söylemiştir.

Felsefenin görevinin insanı Tanrı’nın bilgisine götürmek ve O’nun hizmetine koşmak olduğunu dile getiren Bacon, matematiğe özel bir önem vermiş ve matematiği tüm bilimlerin anahtarı olarak kabul etmiştir. Zamanının bilimiyle ahlakına yoğun eleştiriler yöneltmiş olan Bacon, tümevarım ve tümdengelimden meydana geldiğini söylediği bilimsel yöntem konusunda önemli katkılar yapmıştır.

Roger Bacon,  ortaçağ ile çağdaş bilimadamlarının karışımı sayılabilir. Fransiskan bir keşiş olan ve eğitimini Oxford ve Paris’te sürdüren Bacon, kendisini özellikle matematik çalışmalarına (bu dal bütün bilimlerin temeli olarak kabul edilir ve aritmetik, geometri, astronomi ve müzik alanlarını da içerir) ve fizik bilimlerine—bunlar arasında perspektif, simya, tarım, tıp, astroloji ve sihir bulunmaktadır- adamıştır. Bunun yanı sıra Yunanca, İbranice, Arapça ve Arami (Chaldean) dilleriyle ilgilenmektedir. Bunların tanrıbilim ve felsefeden ayrılamaz olduğunu düşünmektedir. Metafiziği, ilk nedenin bilimi olarak tanımlamaktadır. Bacon düşüncelerini ansiklopedik bir çalışma olan Opus Majus’da toplamıştır.

Bacon, bilginin iki yönteminin kanıtlama ve deneyim olduğunu söylemektedir. “Deneyim olmadan hiçbir şey yeterince bilinemeyecektir. ” “Deneyim, iki katlıdır: Dışsal duyumlara bağlı olan insan ya da felsefe ve içsel görünüm ya da tanrısal esinlenme. Böylece, bilgi, yalnızca tinsel şeyler değil, aynı zamanda yapısal konular ve felsefe bilimleridir” sonucuna ulaşılmaktadır. Böyle içsel deneyim aracılığı bir esrime ya da gizemli bilgi konumuna ulaşılır.

Bacon’un bilimsel tutumu, çağdaş bilimin ruhundan farklıdır. Bir yığın fantastik idea ile boşinanlar bulunmaktadır:astroloji, astronomi ile karışmıştır, büyü ile mekanik, simya ile kimya için de aynı şeyler söylenebilmektedir; ve iki katlı deneyim öğretisi, deneysel bilimlerin gelişimine zararlı olanaklılıkların tüm çeşitlerine kapılarını açmaktadır; Bacon doğayı gözlemlemekte ve çalışmalarını bu doğrultuda sürdürmektedir.

Robert Grosseteste‘in öğrencisi olan Bacon’a göre, güvenilir bilgiye ancak akıl ve deney yollarıyla ulaşılabilir; akıl kanıtlayıcı, deney ise veri toplayıcıdır ve doğru bilgi için her ikisinden de yararlanmak gerekir; akılsal kanıtlama tek başına yeterli değildir; doğruluğunun deneyle denetlenmesi gerekir.

Deney, dışsal ve içsel deney olmak üzere ikiye ayrılır; dışsal deney, duyularla gerçekleştirilir ve doğadaki varlıkları tanıtır; içsel deney ise sezgiyle yürütülür ve doğaüstündeki varlıkları bildirir; bu iki bilgi bir arada insanı mutluluğa götürür.

Deney bilgisi, aynı zamanda yararlı bir bilgidir; çünkü insanlara geleceği önceden kestirme ve kavrayış yetisini geliştirme olanaklarını verir; böylece birçok kötülük gerçekleşmeden önce belirlenebilir ve giderilmesi için gereken tedbirler alınabilir; insanlık bu sâyede doğaya egemen olabilir ve asırlardan beri özlemini duyduğu kurtuluşa ulaşabilir.

Bacon, daha çok optikle ilgilenmiş ve mercekler ve aynalar üzerinde düzenli araştırmalar yapmıştır. Işığın niteliği ve gökkuşağı üzerindeki incelemeleri özellikle ilginçtir; deneylerini özenli bir biçimde tasarlamış ama çoğunu hiç gerçekleştirmemiş ve sadece anlatmakla yetinmiştir.

Yansıma ve kırılma ile küresel sapıncın ilkelerini bulmuş, Güneş tutulmasını gözlemleyebilmek için camera obscura’dan (karanlık oda) yararlanmıştır; camera obscura, göze benzeyen bir araçtır; ışık ışınları, üstündeki küçük bir delikten sızarak bu deliğin karşısında bulunan duvarda küçük bir görüntü oluşturur.

Optiği doğa felsefesinin odak noktası olarak gören Bacon’ın çalışmaları, Eski Yunan ve İslâm optik geleneklerinin belirgin izlerini taşımaktadır. Yaşadığı dönem İbnü’l-Heysem etkisinin ortaya çıkmaya ve güçlenmeye başladığı bir dönemdir ve Bacon’ın temel optik görüşleri de İbnü’l-Heysem’e dayanmaktadır.

Bacon’a göre bir nesnedeki her bir noktadan bütün yönlere doğru ışınlar yayılır ve gözdeki her bir noktaya ulaşır. Bu ışınlar tepesi gözde ve tabanı ise nesnede bulunan bir piramit oluştururlar.

Bütünüyle İbnü’l-Heysem‘den alınmış olan bu açıklamada, İbnü’l-Heysem’de de olduğu gibi, temel bir problem ortaya çıkmaktadır: nesneden çıkan ışınlar göze ulaştığına göre, nesnedeki noktalarla gözdeki noktalar arasında bire bir uygunluk nasıl sağlanacaktır? İbnü’l-Heysem, bu probleme kırılmaya dayanan bir çözüm bulmuştur. Buna göre göze gelen ışınların tümü görmeden sorumlu değildir; görmeyi oluşturan ışınlar, göze dik olarak ve dike yakın olarak gelen ve dolayısıyla kırılmaya uğramayan ve çok az uğrayan ışınlardır. Bu probleme Bacon’ın yaklaşımı ise şöyledir:

Nesneden çıkan ışınlar doğrusal çizgiler boyunca göze ulaşırlar ve bu ışınlardan sadece birisi, kırılmadan girer diğerleri ise, kırılma kanunları gereği, gözün tabakalarında kırılmaya uğrarlar; bundan dolayı, kırılmayan ışının taşıdığı suret kuvvetli, kırılan ışınların taşıdığı suretler ise kuvvetsiz olur ve kuvvetli ışığın kuvvetsiz ışığı gizlemesi gibi, kırılmayan ışınların suretleri, kırılanların suretlerini gizlerler. Böylece tabanı görsel nesnede, tepesi de göz merkezinde yer alan görsel bir piramit oluşur ve görme ortaya çıkar.

Görüldüğü gibi, bu soruna ilişkin açıklamalarında Bacon, İbnü’l-Heysem’in açtığı yoldan gider ve konuya katkısı olmasa da kendisinden sonra çalışan Pecham ve Witelo üzerinde etkili olur.

Bacon, Arapça eserlerden etkilenerek tasarladığı simya deneyleri için bir laboratuar kurmuştur; barut yapımını betimlemiş, kapalı bir kapta ateşlenen baruttan büyük bir güç elde edilebileceğini ve bu gücün silah olarak savaşlarda kullanılabileceğini kavramıştır; uçan makineler, motorlu gemiler ve arabalar tasarlamıştır; bu yönüyle Rönesans Dönemi dâhilerinden Leonardo da Vinci’yi anımsatmaktadır.

 

Leonardo da VIncI

(1452-1519) Eşsiz ressam, seçkin yontucu ve filozof, yaşadığı dönemin en büyük mucit ve deneyci bilimadamı. . . . İşte insanlığı sanata, bilgiye ve doğaya açan Rönesans’ın simgesi Leonardo da Vinci!

“Mona Lisa” ve “Son Yemek” tablolarının yaratıcısı Leonardo’nun sanat dünyasındaki yüce konumu hemen herkesçe bilinen bir gerçek. Ama bilimadamlığı kimliği için aynı şey söylenemez. Bir kez, yüzyılımıza gelinceye dek bu kimlik sanatçı kişiliğinin gölgesinde ya gözden kaçmış, ya da, önemsenmediği için unutulmuştur. Sonra, bu unutulmuşlukta Leonardo’nun kendi sıra dışı tutumunun da payı vardır.

Bilimsel çalışmalarını yayımlamaktan özenle kaçındığı gibi, tuttuğu notları düpedüz okumaya elvermeyen kendine özgü bir yöntemle kaleme almıştı (400 yıl mahzende kalan, çizimleriyle birlikte yaklaşık 5000 sayfa tutan bu notlar sağdan sola doğru yazıldığı için ancak aynada yansıtılarak okunabilmiştir).

Leonardo, yaşam boyu biriken gözlemsel bulgularını; botanik, jeoloji, coğrafya, anatomi ve fizyoloji alanlarındaki inceleme sonuçlarını; mimarlık, şehir planlama, su ve kanalizasyon projelerini; savaş teknolojisine ilişkin buluş ve icatlarım bu notlarda saklı tutmuştu. Notların yüzyılımızın başında gün ışığına çıkarılmasıyla dev sanatçının aynı zamanda, ilgi alanı son derece geniş büyük bir bilimadamı olduğu kesinlik kazanır. Notlar sonraki yüzyıllarda ortaya çıkan bilimsel buluş ve atılımların pek çoğunun ipuçlarını içermekteydi.

Leonardo mesleğinde cerbezeliğiyle tanınan hukukçu bir baba ile köylü bir hizmetçi kızın evlilik dışı çocuğu olarak dünyaya gelmişti. Doğar doğmaz dede evine uzaklaştırılan bebek anasını hiç görmemenin acısıyla büyür. Babasının ilk yıllardan başlayarak eğitimiyle yakından ilgilenmesi çocuk için belki de tek teselli kaynağı olur. Okul yıllarında en çok matematik problemlerini çözmede gösterdiği üstün yetenekle dikkatleri çeken çocuk, bir yandan da yaptığı güzel resimlerle çevresinden hayranlık topluyordu.

Onaltı yaşına geldiğinde dönemin tanınmış artisti Andrea del Verrochio’nun yanma çırak olarak girer. Ustasının gözetiminde coşkuyla işe koyulan delikanlı çok geçmeden ağaç, mermer, kil ve metal işlemede büyük beceri kazanır. Olağanüstü yeteneklerini gören usta çırağının Latin ve Grek klasikleriyle felsefe, matematik ve anatomi üzerinde öğrenimini sürdürmesine yardımcı olur. Öyle çok boyutlu bir öğrenim, Verrochio’ya göre, gerçek bir sanatçı için vazgeçilmez bir gereksinimdi.

Çıraklık dönemini yirmialtı yaşında noktalayan Leonardo başvurusu üzerine Artistler Loncası’na kabul edilir. Artık, kendi yönünü çizme, geleceğini kurma özgürlüğüne kavuşmuş demekti. Büyüleyici resim ve yontularının yanı sıra ortaya koyduğu mühendislik projeleriyle Dük’lerin ilgisini kazanan genç adam, yaşamını sırasıyla Floransa, Milano, Roma saraylarında sürdürme olanağı bulur; son üç yılını ise Fransa’da Kral Francois I’in koruyuculuğunda geçirir.

Leonardo çok yönlü etkinlikler içinde sürekli uğraş veren bir kişiydi, ancak yeterince dirençli değildi. Çoğu kez, coşkuyla üstlendiği bir çalışmayı bitirmeden, daha çekici bulduğu başka bir işe yönelir, yeni serüvenler arkasında koşardı. Asıl tutkusu sanattı kuşkusuz. Sanat dışı çalışmalarında özellikle esemenli ve dağınıktı. Projelerinin pek çoğu kağıt üzerinde kalmış, ya da, tam sonuçlandırılmadan bir kenara itilmişti.

Projeleri arasında çok önemsediği, deneysel olarak gerçekleştirmeye çalıştığı uçak, helikopter, paraşüt türünden araçlar, çeşitli silah modelleri vardı. Anatomi konusundaki incelemeleri hiç kuşkusuz dönemin en değerli bilimsel çalışması diye nitelenebilir. Hayvan ve insan cesetleri üzerindeki teşrih çalışmaları, sayısı 750′yi bulan ayrıntılı çizimleri ona anatomi tarihinde üstün bir yer sağlamıştır.

Fizyolojinin gelişmesine yaptığı katkıları arasında en başta kanın işlev ve devinimine ilişkin çalışması gelir. Kalbin kaslarını ayrıntılarıyla incelediği özellikle kapakçıkların işlevini iyi kavradığı çizimlerinden anlaşılmaktadır. Kanın tüm organizmaya yayılarak doku ve organları nasıl beslediğini, çökeltileri nasıl temizlediğini açıklamaya çalışır. Organizmadaki kan devinimini suyun doğadaki devinimine benzetir: Bulutlardan yağışla inen su deniz ve göllerde toplanır, sonra buharlaşarak yeniden bulutları oluşturur. Bu benzetişte, Harvey’in 100 yıl sonra olgusal olarak doğruladığı “kan dolaşımı” hipotezini bulabiliriz.

Astronomiye gelince, Leonardo’nun bu alanda Kopernik’i öncelediği söylenebilir. Kilisenin o sıra gösterdiği hoş görüden de yararlanarak, yerkürenin güneş çevresinde bir gezegen olduğunu ileri sürebilmişti. Oysa yerleşik öğretiye göre dünyamız evrenin merkezinde sabitti. Göksel nesneler ise kutsal nitelikleriyle apayrı bir ortamda devinmekteydiler.

Leonardo’nun fizikte, özellikle mekanik dalında, ulaştığı bazı sonuçlarla Galileo ile Newton’u da öncelediği bilinmektedir. “Canlılar dışında algıladığımız hiç bir nesne kendiliğinden devinime geçmez,” diyen Leonardo, “her nesnenin devindiği yönde ağırlığı olduğunu, serbest düşen bir cismin düşmede geçen zamanla orantılı olarak ivme kazandığını” ileri sürmekle de kalmaz; daha ileri giderek, egemen Aristoteles öğrentisinin tam tersine, kuvveti devinimin değil, hız veya yön değiştirmenin nedeni olarak gösterir. Bu savın daha sonra mekaniğin devinim yasalarından biri olarak dile getirildiğini biliyoruz.

Aristoteles’in öğretilerine uzak duran Leonardo’nun Arşimet’e çok yakın ilgi göstermesi ilginçtir. Arşimet’in yapıtları o sıra henüz basılmamıştı. Ellerde dolaşan bir kaç el yazması kopya da, okunur gibi değildi. Bu kaynakları çok önemseyen Leonardo’nun okunaklı iyi nüsha elde etmek için başvurmadığı kimse, çalmadığı kapı kalmaz. Amacı: klasik çağın öncü bilimadamının kaldıraç ve hidrostatik konularındaki buluşlarını bilim dünyasına tanıtmak, “Arşimet” adını layık olduğu yere yükseltmekti.

Su ve havada dalgasal devinim, ses oluşumu vb. olgularla da ilgilenen Leonardo, ışığın da dalgasal nitelikte devinme olasılığından söz etmişti. Onun ilginç bir gözlemi de, yarım ay’ın karanlık bölümünün belirsiz de olsa görünmesine ilişkindir. “Eski ay, yeni ay’ın kucağında” diye betimlediği bu olayı, dünyamızın yansıttığı ışıkla açıklar.

Leonardo’ya jeolojinin öncüsü gözüyle de bakılabilir. Dağ yamaçlarında topladığı fosillerin bir bölümünün deniz yaratıklarına ait olduğunu söyler; yerküre kabuğunun zamanla değişikliklere uğradığı, yeni tepe ve vadilerin oluştuğu gibi noktalara değinir. Üstelik bu tür oluşumların salt doğal nedenlere bağlı olduğunu vurgulamaktan da geri kalmaz.

Simya, astroloji ve büyü türünden uygalamaları aldatmaca bulduğunu açıkça söyleyen Leonardo, doğayı neden-sonuç ilişkisi içinde düzenli, nesnel bir gerçeklik olarak algılıyordu. Dinsel inançlara saygılıydı, ama onun için bilim teolojik baskıdan uzak, özgür bir arayış olduğu ölçüde amacına ulaşabilirdi. Leonardo’nun bilimsel yöntem anlayışı neredeyse çağdaş anlayışla eşdeğer düzeydedir. Bu anlayışta “olgusal veri – açıklayıcı kuram etkileşimi” temel öğedir.

Leonardo’nun sezgisel de olsa bunun ayırdında olması oldukça şaşırtıcı; çünkü, bu noktanın açıklık kazanması çağımız bilim felsefesini beklemiştir. Leonardo bilimde deney gibi matematiğin de önemini kavrayan bir düşünürdü. Ona göre insanoğlu sürgit kesinlik arayışı içinde olmuştur. Ancak, kesinlik görecelidir; olduğu kadarıyla, doğal bilimlerde değil, soyut zihinsel kavramlarla sınırlı kalan matematikte bulunabilirdi. İşe gözlemle başlayan bilimadamı ise, ulaştığı açıklamaları gözlem ya da deneye başvurarak doğrulamakla yetinmeliydi.

Vurguladığı bir nokta da, teori ile uygulamanın elele gitmesi gereğiydi: Uygulamaya elvermeyen teoriyi anlamsız, teoriye dayanmayan uygulamayı kısır sayıyordu. Doğaya tüm saplantılardan arınmış bir kafayla, bir çocuğun her şeyi kucaklayan açık yüreğiyle yaklaşmayı öğütlüyordu.

Onun gözünde sanat, felsefe ve bilim kültürün bütünlüğünde birleşen, etkileşim içinde gelişen çalışmalardı. Sanatı salt yaratıcı imgelemin, felsefeyi soyut düşüncenin, bilimi deneyin ürünü sayıp birbirinden ayrı tutmak yanlıştı. Leonardo değişik ölçülerde de olsa hepsinde yaratıcı imgelemin, soyut düşüncenin ve olgusal deneyimin payı var demekteydi.

Tüm ilgi alanlarında evrensel bir deha, yetkin bir örnek sergileyen Leonardo, son günlerinde, zengin yaşam öyküsünü basit bir tümcede dile getirmişti: “Nasıl yaşamam gerektiğini anlamaya başladığımda, nasıl ölmekte olduğumu gördüm. ”

Öldüğünde 67 yaşındaydı, ama bedensel olarak tükenmişti. Güçlü bir beynin amansız sürükleyişi içinde, durmadan bulmak ve yaratmak savaşımı veren bu insanın yaşamı acı dolu güzelliğiyle gerçek bir dramdı.

 

CopernIcus (Kopernik)

(1473-1543) Düşünce tarihinde etkisi yönünden Copernicus devrimiyle boy ölçüşebilecek pek az dönüşüm vardır. Son dörtyüz yılda tanık olduğumuz bilimsel gelişmenin astronomide yer alan bu devrimle başladığı söylenebilir.

Dinsel bağnazlıkla özgür düşünce hemen her dönemde çatışma içinde olmuştur. Ortaçağ düşünce geleneğini kıran ilk bilimsel atılımın astronomide ortaya çıkması bir bakıma doğaldı. Birkez, astronomide hiç bir alanda olmayan bir bilgi birikimi vardı. Babillilerin göksel nesnelerin devinimlerine ilişkin gözlemlerini, kuramsal düzeyde işleyen eski Yunanlıların astronomide büyük ilerleme kaydettikleri bilinmektedir.

17. yüzyıla gelinceye dek egemenliğini sürdüren Ptolemy (Batlamyus) sistemi bu birikimin ürünüdür. Sonra, Rönesans’la birlikte, astronomide ivedi çözüm gerektiren pratik sorunlar ağırlık kazanmıştı. Bu sorunlardan biri denizde boylam hesaplanmasına ilişkindi. Bu ise, öncelikle, güneşin izler göründüğü yolun doğru belirlenmesini gerektiriyordu.

Çözümü aranan bir diğer sorun takvime ilişkindi. M. Ö. 46′da oluşturulan yürürlükteki takvim yetersizdi. Örneğin, o takvime göre, bir yıl 365 günden oluşuyordu (Oysa, şimdi bildiğimiz gibi yılın süresi bundan 11 dakika 14 saniye daha kısadır).

Ne var ki, bu türden nedenler, doğruluğu söz götürmez sayılan Ptolemy teorisinde köklü bir değişiklik için yeterli olamazdı. Astronomlar çoğunluk kimi düzeltmelerle yer-merkezli sistemin korunabileceği inanandaydılar. Nitekim, klasik dönemden beri kimi bilginlerce önerilen güneş-merkezli sistem onların gözünde saçma olmaktan ileri bir anlam taşımıyordu.

Yerleşik sistem nerdeyse bağnaz bir inanca dönüşmüştü. Öyle ki, ortaçağ sonlarına doğru Oresme ve daha sonra Cusalı Nicolas gibi bilginlerin yönelttikleri ciddi eleştiriler hiç bir etki uyandırmadan kalır. Yeni arayışların başladığı Rönesans’ta bile sistemin sarsılması kolay olmaz.

Copernicus’un daha öğrencilik yıllarında Ptolemy teorisine karşı içine düştüğü kuşku ve doyumsuzlukta kendisini önceleyen eleştiricilerin, özellikle hocası Novara’nın etkisi büyük olmuştur. Bologna üniversitesinde astronomi profesörü olan Novara, kilisenin o sıra içinde olduğu görecel hoşgörüden de yararlanarak, Ptolemy sistemine sert eleştiriler yöneltmekteydi.

Biraz önce de değindiğimiz gibi, Ptolemy sisteminin göksel olguları açıklamaya yönelik salt bir teori olmaktan ileri bir niteliği, dinsel ya da ideolojik bir bağışıklığı vardı. Sistem ortaçağ skolastik felsefesiyle bütünleşmiş, nerdeyse resmi bir kimlik kazanmıştı. Eleştirilerin, ne denli yerinde ve tutarlı olursa olsun, önemli bir etki yaratması beklenemezdi.

Sistemin sarsılması Rönesans’ın getirdiği yeni anlayışı, farklı kültür ortamını bekler. Rönesans sanatta parlak bir atılım olduğu kadar, sonunda din, bilim, politika ve ekonomide de geleneksel katı tutumları kıran, dünyaya yeni bir bakış açısı getiren uzun süreli bir dönüşümdür. Copernicus’un şansı, üstün zekâ ve güçlü öğrenme tutkusunun yanı sıra, her alanda yeni arayışların başladığı öyle bir dönemde dünyaya gelmiş olmasıdır.

Copernicus kimdi ve ne yaptı? Yalnız bilimde değil, insanlığın dünya görüşünde de büyük bir devrime yol açan çalışmasının kapsam ve niteliği neydi?

Nicolaus Copernicus Polonya’nın Torun kentinde üst-yaşam düzeyinde bir ailenin çocuğu olarak dünyaya geldi. On yaşında iken babasını yitirdi; bir bilgin-papaz olan amcasının koruyuculuğu altında büyüdü; aldığı eğitim daha çok teolojiye yönelikti. Ancak, Copernicus’un ilgi alanı belli bir konuyla sınırlanamayacak kadar genişti. Ülkesinde Cracow üniversitesini bitirdikten sonra İtalya’ya gider; Bologna, Padua ve Ferrara gibi dönemin seçkin üniversitelerinde astronomi, matematik, hukuk ve tıp dallarında altı yıl süren öğretim görür.

Bir süre Roma’da matematik profesörlüğü yaptıktan sonra ülkesine döner, kilisede üst-düzey bir görev üstlenir. Ayrıca, çeşitli devlet hizmetlerini sürdüren Copernicus bir ara ülkesini dış ilişkilerde diplomat olarak da temsil eder. Ne ki, onun asıl ilgi alanı astronomi idi. Aralıksız otuz yıl süren bir çalışmanın ürünü baş yapıtı Göksel Kürelerin Dönüşleri Üzerine arkadaşlarının ısrarı üzerine yayıma girer. Kitabının ilk nüshası Copernicus’a yaşamının son günlerinde hasta yatağında ulaşır.


Sorumuza dönelim: Copernicus devrimi nedir, niçin önemlidir?

Copernicus işe koyulduğunda ortaçağ dünya görüşüne karşı çıkma gibi bir niyeti yoktu. Aldığı eğitim temelde o görüşe dayanıyordu. Onun yapmak istediği çeşitli yönlerden yetersiz bulduğu Ptolemy astronomisini matematiksel olarak daha basit, kendi içinde uyumlu ve açıklama gücü daha yüksek bir sisteme dönüştürmekti.

Ptolemy teorisine göre, gökyüzü yıldızların “çakılı” olduğu dönen bir küreydi; dünya bu kürenin merkezinde sabit bir konuma sahipti; çevresinde ay, güneş ve gezegenleri taşıyan iç içe bir dizi kristal küre vardı. “Tanrısal bir düzen” diye imgelenen bu sistem, ayrıca insana evrenin merkezinde olma onur ve gururunu sağlamaktaydı.

Ne var ki, salt bilimsel açıdan bakıldığında sistem gereksiz yere karmaşık olduktan başka tutarsızdı. Sistemde birbirini tutmayan bir takım varsayımlar, ayaküstü gereksinmelere göre oluşturulan açıklamalar vardı. Benzetme yerindeyse, baş, gövde, el ve ayak gibi her parçası başka bir yerden derlenmiş bir heykelin acayip görüntüsünü sergiliyordu.

Copernicus astronomiyi basitleştirme ve tutarlı kılma girişiminde, kökü klasik çağa uzanan bir hipoteze başvurur (M. Ö. 3. yüzyılda Aristarcus adında bir bilgin, şimdi “güneş sistemi” dediğimiz sistemin merkezinde dünyanın değil, güneşin yer aldığını ileri sürmüş, ancak bağnaz çevrelerin tepkisiyle susturulmuştu).

Doğrusu, yalnız yerleşik öğretiye değil sağduyuya da ters düşen bu hipotezin bilim tarihindeki devrimsel sonucunu Copernicus’un öngördüğü kolayca söylenemez. Büyük olasılıkla, Aristarcus hipotezi onun gözünde göksel sisteme geometrik uyum sağlayan bir basitleştirme aracıydı. Nitekim kitabın önsözünde önerilen yeni sistemin bilimsel doğruluğu değil, salt matematiksel geçerliği vurgulanıyordu.

Gerçekten, Copernicus teorisinin, dünyanın sistemdeki yeni konumu dışında köklü bir değişiklik içerdiği kolayca söylenemez. Bir kez sayılarını azaltmakla birlikte göksel kürelere ilişkin varsayımdan vazgeçilmemiştir. Sonra, gezegenlerin devinimlerinde düzgün çembersel yörüngeler izlediği görüşü korunmuştur. Üstelik yeni teori de gözlemsel verilerle uyum bakımından kimi güçlüklerle karşı karşıyaydı. Belki de biraz da bu nedenle 16. yüzyılın sonlarına gelinceye dek teori beklenen ilgiyi görmez; Ptolemy sistemi yürürlükte kalır.

Bilindiği gibi, Copernicus teorisi iki temel varsayım içermektedir: (1) Gezegenleri taşıyan göksel küreler dünyanın değil, güneşin çevresinde dönmektedir; (2) Dünya merkezde sabit değil, kendi ekseni çevresinde günlük, güneşin çevresinde yıllık dönüşler içindedir. Copernicus’u bu varsayımlara en başta gözlemsel verilerin yönelttiği kuşku götürmez. Bunun çarpıcı bir kanıtım şu sözlerinde bulmaktayız:

Kanımca, ileri sürdüğüm ilkeler soruna büyük bir basitlik getirmektedir. Ptolemy sisteminde olduğu gibi dünyayı merkezde sabit varsayma çok sayıda küre varsayımına yol açmış, bu da sorunu içinden çıkılmaz karışıklığa sokmuştur. Önerdiğim sistem ise, gereksiz ya da boş varsayımlara gitmeksizin, bir çok gözlem verisini tek nedenle açıklamaya elveren, gerçeği her yanıyla yansıtan bir sistemdir.

Bu ussal yaklaşım Copernicus’un çok iyi bilinen cephesi. Onun çoğu kez gözden kaçan bir başka cephesi daha var! Aşağıdaki alıntıda Copernicus’un evreni “ilkel” diyebileceğimiz büyülü bir dille betimleme yoluna gittiğini görmekteyiz:

Evrenin ortasında güneş taht kurmuştur. Bu görkemli tapınakta, çevresindeki herşeyi bir anda aydınlatan “güneş” dediğimiz nur kütlesi için daha saygın bir konum düşünülebilir miydi? Güneşi evrenin Lambası, Bilge yöneticisi diye övenler olmuştur: Hermes Trismegutus’un gözünde O ışıldayan Tanrı, Sophocles’in Elektra’sı için herşeyi gören yüce varlıktır. Güneş gerçekten tahtına kurulmuş Sultan gibi, çevresinde dolaşan gezegenleri çocukları gibi yönetir.

Copernicus’un bu duygusal yanıyla bir tür gizemcilik olan, teologların da paylaştığı bir felsefenin (Yeni-Platonculuk) etkisinde olduğu söylenebilir. Ama öylede olsa kilisenin resmi öğretiye ters düşen bir görüşü hoş karşılaması beklenemezdi. Ne ki, Bruno ve Galileo’ya gelinceye dek Katolik kilisesi belirgin bir tepki göstermez. Oysa protestan liderler daha baştan Copernicus’u kınama yoluna gitmişlerdi. “Bu budala” diyordu Luther, “astronomi bilimini altüst etme sevdasındadır. Oysa kutsal kitap arzın değil, güneşin döndüğünü bize bildirmiştir. . . . Bir yeni yetme astrologa halk kulak versin, olacak iş mi?”

Copernicus mistik eğilimlerine karşın bir astrolog değil, gerçek bir astronomdu. Tarih onu 17. yüzyıl bilimsel devrimine yol açan araştırma tutkusu ve atılımcı kişiliğiyle bize tanıtmaktadır.

 

AmbroIse Pare

Fransız bilim adamlarından Pare (1510-1590), dört farklı kral zamanında cerrah olarak sarayda hizmet vermiştir. O dönemde cerrahi henüz bir bilim olarak kabul edilmemekte ve cerrahi müdahaleler, daha çok berber cerrahlar tarafından yürütülmekteydi. Pare de bir berber cerrahtır.

Latince bilmediği için eserlerini Fransızca olarak kaleme almıştır. Belli başlı eserlerinden biri tüfek yaralarının tedavisi ile ilgilidir. Zira o devirde, uzun süreli savaşlar olmakta ve kullanılan silahların sebep olduğu yaralar önemli bir sorun teşkil etmekteydi. Savaşlarda bizzat cerrah olarak görev yapan Pare, tüfek yaralarına tatbik edilen dağlamada kullanılan yağın bitmesi sonucunda ağrıyı dindirmek için merhem tatbik etmiş ve onun, dağlamaya nispetle daha az acı vermesinin yanı sıra yaranın daha çabuk iyileştiğini gözlemiştir. Bunun üzerine bu konuda bir eser kaleme alarak bu deneyimini cerrahlara duyurmak istemiştir.

Pare bu eserinin yanı sıra iki önemli çalışmasını da yine Fransızca olarak kaleme almıştır. Bunlardan birisi, ayrıntılı bir anatomi kitabıdır (Genel Anatomi). Eserde çeşitli şemalarla anlatım daha da açık hale getirilmeğe çalışılmıştır. Resimler, o devir eserlerinin karakteristiği olarak fevkalade güzeldir. İkinci eseri ise genel bir cerrahi kitabıdır (Genel Cerrahi). Burada Pare, cerrahi müdahalelerin yöntemleri ve cerrahi teknikleri ile ilgili bilgi vermektedir.

Cerrahi müdahaleleri amputasyon (işe yaramayacak kadar bozulmuş olan organ ya da kısmın kesilmesi), dağlama ve ligatur (bağlama) olmak üzere üç ana kolda toplayan Pare, cerrahi müdahalelerde kullanılacak yeni bazı aletler de önermektedir. Örneğin bunlardan biri zor doğumlarda bebeğin rahimden alınmasını sağlayan ‘suni eller’adını vermiş olduğu alettir.

NIccolo TartaglIa

İtalyan matematikçi Niccolo Tartaglia, üçüncü derece denklemlerin çözümüne ilişkin buluşuyla tanınmıştır. Yoksul bir ailenin oğluydu. Doğduğu kentin 1512’de Fransız Birlikleri tarafından yağmalanışı sırasında, kendisine sonraki yıllarda soyadı olarak kullanacağı ‘kekeme’ anlamındaki Tartaglia takma adının verilmesine neden olan bir konuşma zorluğuna yol açan ağır yaralar aldı. Kısa bir süre, bir özel öğretmen yardımıyla, daha sonra da kendi başına yürüttüğü öğreniminde çok hızlı bir ilerleme kaydetti.

1534’de profesör ünvanıyla Venedik’e gitti. Ertesi yıl üçüncü derece denklemlerin çözümünü sağlayan bir yöntem bulduğunu açıkladı. Bu çözüm yöntemini ilk bulan matematikçi Skipionlu Ferro’nun öğrencisi Antonio Maria Fiore ile giriştiği bir yarışmaya hazırlanırken kendi yöntemini geliştirmeyi başaran Tartaglia, buluşunu gizli tutmaya karar vermişti. Daha sonra kesinlikle açıklamamak koşuluyla Girolamo Cardano’ya öğretmeye razı oldu.

Cardano’nun sözünü tutmaması ve 1545’te yayımladığı “Büyük Sanat” adlı yapıtında bu yönteme de yer vermesi üzerine Cardano’yu sahtekârlık, yalancılık ve hırsızlıkla suçladı, onu savunan Lodovico Ferrari ile önce yazışma biçiminde, sonra da yetkili bir kurul önünde yarışmayı kabullendi. 1548’de Milano’da yapılan ve Ferrari’nin üstünlüğüyle sonuçlanan yarışmada iki bilim adamı birbirlerine, çeşitli konularda 62 soru yöneltti.

Aritmetik, sayısal hesaplama ve kök bulma tekniklerine, özgün katkılarının yanısıra, Eukleides’in “Elemanlar” ını ve Archimedes’in yapıtlarının bir bölümünü İtalyanca’ya çevirerek klasik matematikçilerin çalışmalarının yaygın olarak tanınmasını başlatan ilk matematikçi olan Tartaglia, Cardano’ya yönelttiği suçlamalarını da içeren “Çeşitli Problem ve Buluşlar” ve daha önce 1537’de yayımladığı “Yeni Bilimler” adlı yapıtlarında “eğik atış” konusunda oldukça ilginç görüşlere de yer vermiş ve serbest düşmeye bırakılan cisimlerin davranışını belirleyen yasaların ortaya çıkarılmasını amaçlayan çabaların öncülüğünü yapmıştı.

Eğik atış yapmakta olan bir cismin yörüngesinin hiçbir bölümünün doğrusal olmayacağını öne sürmüşse de, matematiksel olarak kanıtlayamadığı bu görüşünü bilim dünyasına kabul ettirememişti.

 

Conrad Gesner

(1516-1565) 16. yüzyılda biyologlar, mümkün olduğunca bitki ve hayvanlarla ilgili bütün mevcut bilgiyi bir araya getirerek sunmaya çalışmışlar; bunların yanı sıra, yeni keşiflerle elde edilen bilgiyi de bir araya getirmeye gayret ettmişlerdir. Bu ansiklopedist doğa bilimcilere güzel bir örnek Conrad Gesner’dir.

İsviçreli olan Gesner, “Hayvanlar Tarihi” (Historia Animalium) adlı 4 ciltten oluşan bir eser yazmıştır. Buradaki sınıflama, Aristoteles sınıflamasına uygundur. Bunlar içerisinde özellikle balıkların açıklaması dikkate değerdir. Omurgasız hayvanlar hakkındaki resim ve açıklamaları da aynı şekilde ilginçtir.

Gesner bu eserinde ele aldığı hayvanların her birinin adını, bu adın etimolojisini, hayvanın yaşadığı yeri, alışkanlıklarını, yararlarını, ilaç yapımında herhangi bir kısmı ya da ürününün kullanılıp kullanılmadığını ve o hayvan hakkında mevcut hikaye, inanç ve efsaneleri de aktarmıştır.

Gesner’in aynı zamanda kaleme alındıktan yaklaşık 200 yıl sonra yayınlanmış olan bir de botanik eseri vardır. Gesner, doğa aşığıdır; ne kendisinden önceki devrilerde ne de daha sonraki dönemlerde onun bir benzerine rastlamak mümkündür. Bitki ve hayvanların yanı sıra, cansız doğaya da büyük ilgi duymuş; dağları, ovaları incelemiştir. Ona göre doğaya sadece bitki toplamak için açılmak yeterli değildir; dağcılık apayrı, zevk veren bir uğraştır.

 

 

FrancIs Bacon

Francis Bacon (15611626), İngiliz devlet adamı ve filozof. 22 Ocak 1561‘de doğan Francis Bacon, Kraliçe 1. Elizabeth’in adalet bakanı Nicholas Bacon’ın oğludur. Her ne kadar Francis Bacon’ın ünü babasınınkini gölgede bıraksa da, babası, Nicholas Bacon da sıradan birisi olmaktan çok öte, döneminin ünlü isimlerindendi. Francis Bacon, oniki yaşında girdiği Trinity College, Cambridge‘de skolastik felsefeyle tanıştı ve skolastik felsefeye karşıt görüşlerinin tohumları burada atıldı. 1576‘da Hukuk okumaya başladıktan sonra, Fransa’daki İngiliz elçisinin yanında çalışması için bir teklif aldı. Teklifi kabul ederek, öğrenimine ara verdi ve Fransa’ya gitti. Bacon’ın felsefeye olan aşkının iyice filizlenmeye başladığı bu yıllarda, ansızın, 1579‘da babasının vefat haberini aldı. Cepleri boş bir şekilde İngiltere’ye döndüğünde yapabileceği tek şey hukuk öğrenimine devam etmek oldu. Öğrenimini tamamladıktan sonra avukatlık yapmaya başladı. Çocukluğundan beri alıştığı lüks yaşama özlem çekiyordu, bu yüzden avukatlık yaparken bir taraftan da siyasi bir kariyer için çalıştı. Nitekim 1584′de Parlementoya seçildi.

Essex kontuyla yakın bir arkadaşlığı vardı. Fakat arkadaşlıkları, Essex kontunun Kraliçe 1. Elizabeth’i devirmek üzere kurduğu planlar nedeniyle bozuldu. Kraliçeye olan bağlılığının büyük olduğunu belirten Bacon, uzun süre arkadaşını fikirlerinden döndürmeye çalıştı. Kraliçeye yapılan başarısız bir suikast girişiminden sonra Essex kontu tutuklandı. Bacon’ın da çabalarıyla salıverilen kont, daha sonra Kraliçeyi devirmek için yeni bir girişimde bulundu. Bu sefer tutuklandığında, suçlu bulundu ve idam edildi. Bu sırada Bacon’ın yıldızı parlamaktaydı, her ne kadar Essex kontuyla olan bu ilişkileri sonucu onu hayatı boyu tehdit edecek düşmanlar edinmiş olsa da Kraliçeye olan bağlılığı hiç kuşkusuz ona kariyer açısından büyük fırsatlar vermişti.

1603‘de Kraliçenin veliahtı olarak James I tahta geçince hızlı bir şekilde önemli mevkilere geldi. Önce “Sir” unvanı aldı, sonra 1606‘da başsavcı, 1618‘de ise İngiltere başyargıcı oldu. Kariyerinin zirvesindeyken, çöküşü kapıyı çaldı. 1621‘de rüşvet suçuyla tutuklanıp yargılandı. Suçlu bulundu ve hapis cezasına çarptırıldı. Hapishanede fazla kalmadı ve salıverildi, fakat ne Parlementoda ne de herhangi bir politik konumda bulunması bundan sonra imkansızdı. Siyasetten kopan Bacon hayatının geri kalan yıllarını felsefi düşüncelerine adadı. 1626‘da zatürree olduğu varsayılan bir hastalık yüzünden vefat etti.

 Bacon’ın felsefesinin merkezinden bilim vardır. Bilimin insanları aydınlatma ve geliştirme işlevini öne çıkarmıştır. O’na göre bilim, doğanın özüne yönelmelidir. Doğayı deneyle kavramaya çalışmıştır. Pragmatizm ile sonuçlanacak olan deney temeline dayanan İngiliz felsefesinin ilk tohumlarını atmıştır. Bacon’a göre bilimin başlıca yöntemi tümevarım yöntemidir.

Bacon yapıtlarıyla bilimin ve felsefenin, gelişimini göstermiş, doğa ve akıl arasında bir bağ kurulabileceği fikrini yerleştirmiştir.

Bacon’ı felsefe ve siyaset alanları dışında edebiyat alanında da büyük bir üne ve öneme kavuşturan eseri hiç kuşkusuz ünlü “Denemeler”idir (Essays). 1597‘de ilk kez basılan bu eseri, daha sonra genişletilmiş bir şekilde 1612 ve 1625‘de tekrar basıldı. Yalın ve berrak anlatımının yanında zekice oluşturulmuş kompleks formlarıda içeren bu eseri Bacon’ı İngiliz edebiyat tarihinin ünlü simalarından biri yapmıştır. Denemeler, birçok farklı konuda Bacon’ın fikirlerinde gezinmemizi sağlayan, onu ve düşünce biçimini anlamamıza olanak verdiği gibi günlük yaşantımız açısından da değerli nasihatlara ve düşüncelere sahip olan önemli bir eserdir.

Denemeler üzerinde birkaç noktada durmamız gerekirse, bunlardan en önemlisi, Denemeler’deki ahlâk felsefesidir. Hristiyan ahlâk yapısının uzağında daha makyavelist bir ahlâk görüşü hakimdir. Yine de pür bir makyavelist tavırdan öte, geleneksel Hristiyan ahlâkı ile makyavelist tutumun ortasında, daha uzlaşmacı ve vasat bir ahlâk yapısı göze çarpmaktadır.

Denemeler’den fazlasıyla anladığımız üzere Bacon’ın ideal yönetim sistemi otokrasidir. Fakat onun otokrasi anlayışı ortaçağdakinden biraz daha farklı, belki de filozof-krala daha yakın bir anlayıştır.

Bacon, Denemeler’de, gençlikten dostluğa, dostluktan siyasete, siyasetten psikolojiye kadar çok geniş bir yelpaze içerisinde birçok farklı görüş sunmuştur.

Bilimin İlerlemesi: Hayatı boyunca üzerinde duracağı felsefi fikirlerinin temelini attığı bu eser, Bacon’ın ilk felsefi çalışmasıdır. Eserin ismi belki de eserin mühtevasını en güzel özetleyen kalıp “Bilimin İlerlemesi” (The Advancement of Learning), zira eser çok geniş bir alanı kaplıyor birçok farklı bilim dalı için yeni yaklaşımlar geliştirilmesini ısrarla savunuyor, tıbba, fizyolojiye değiniyor, psikolojik yorumlarda bulunuyor. Bilimin her yönde, her açıdan gelişmesi gerektiğini savunuyor. Bilim, bilimin ve bilimsel araştırmanın önemi üzerine yazılan onca sayfadan ve bilime yapılan onca övgüden sonra, bilimin bir kılavuz olmaksızın kaybolacağı ve eksik kalacağı sonucuna varıyor. Bilimin kılavuzu: Felsefe. Felsefenin bilime yapacağı kılavuzluğu anlatırken, yeni bilimsel yöntemi de tümevarım yöntemi olarak açıklıyor.

Eser incelendiğinde belki de göze çarpan en önemli unsur Bacon’ın insanlığa, insana olan güveni. Bacon insanı kesinlikle doğadan üstün tutuyor. Bilimle yapılacak keşiflerin insanı doğadan üstün kılacağından emin. Yaşadığa çağa göre çok devrimsel ve hatta hayalperest nitelikte bir söylemdir bu.

Bilime katkıları gözönüne alındığında bilimin öncülerin kabaca üç grupta toplanabilir. “Kabaca” diyoruz, çünkü bilimadamlarının en azından bir bölümü için böyle bir sınıflama yapay olmaktan ileri geçmez.

(1) Çalışmaları deneysel ağırlıklı olanlar (Faraday, Marie Curie, Rutherford, vb. );

(2) Kuramsal düzeyde devrim niteliğini taşıyan atılımlarıyla tanınanlar (Newton, Darwin, Maxwell, Einstein, vb. );

(3) Çalışmalarında pratik sorunların çözümüne ağırlık verenler (Archimedes, Pasteur, vb. ).

Katkısı bu üç tür çalışmadan hiç birine girmeyen, ama bilimsel yöntem anlayışım, bilimin uygar yaşam için önemini, uygulamaya yönelik bilginin güç ve değerini işleyen yapıtları; “kısır” diye nitelediği skolastik düşünce geleneğine karşı yüreklice ortaya koyduğu tepkisiyle bilim tarihine yön çizen bir öncü vardır: Francis Bacon.

Bacon, dar anlamda bir bilimadamı olmaktan çok, kendisine özgü yaklaşımıyla bir bilim yorumcusu, öngördüğü bilgi dünyasını kurma misyonuyla tabuları kırma savaşımı veren bir düşünürdü. İçine doğduğu dünya, çelişkilerle dolu bir dönemden geçmekteydi: bir yanda insanoğlunun yeni keşiflerle bilinmeyene açıldığı, bilgi arayışına girdiği; öte yanda büyü, fal türünden aldatıcı uygulamaların yaygınlık kazandığı, kilise buyruğuna ters düşünenlerin yakıldığı bir dönem!

Rönesansla birlikte sanatta belirginlik kazanan coşkulu atılım, 16. yüzyılda doğayı anlama, olup bitenleri açıklama arayışına dönüşmüştür. Bacon’un bu dönüşümü yorumlama ve yönlendirme tutkusu, aydınlanma çağını henüz yakalayamamış toplumlar için bugün de geçerli bir örnektir. Bacon, İngiliz Kraliyet Sarayı çevresinde, üst-düzey yönetici bir ailenin çocuğu olarak büyümüştü. Amcası dönemin en etkili politikacısıydı.

Daha küçük yaşlarındayken Francis, güzel ve ciddi konuşmalarıyla Kraliçe Elizabeth’in ilgisini çekti. Kraliçe, ziyaretçi ve misafirlerine, saçlarını okşamaktan hoşlandığı bu çocuğu, “Saray’ın Minik Lordu” diye tanıtırdı. Çok yönlü bir eğitimle yetişen delikanlı, 18 yaşına geldiğinde diplomatlar arasına katılmaya, elçilerle birlikte Avrupa başkentlerine gidip gelmeye başladı.

Ne var ki, bu parlak başlangıç uzun sürmedi. Babasının erken ölümü, yarattığı politik skandal nedeniyle ağabeyinin ölüm cezasına çarptırılması, aileyi çökertti. Annesinin geçim sorumluluğunu üstlenen Francis, bir yandan aile borçlarını ödeme uğraşı verirken, bir yandan da kendi geleceğini kurma çabasını elden bırakmıyordu. Başta Kraliçe olmak üzere, hiç kimse yüzüne bakmıyordu artık!

Ama hüsrana dönüşen yaşamında onu ayakta tutan ve yaşam boyu sürecek bir inancı vardı: Uygar geleceğe giden yolda aydın kesime bilimin önemini kavratmak, bilimsel araştırmaya kurumsal bir kimlik kazandırmak! “İlgi alanımda yalnızca bilgi, bilgiye yönelik araştırma vardır,” diyordu Bacon.

Deneyimci (ampirik) felsefenin öncüsü olan Bacon, temelde somut sorunlara ağırlık veren pragmatist bir düşünürdü. İnsanlığın mutlu ve aydınlık geleceğine ilişkin, biraz ütopik ve iyimser bir beklentisi vardı. Ona göre, bu geleceğin başlıca güç kaynağı güvenilir bilgiydi. İlerlemeyi tıkayan tek engel, “idolamentis” dediği yerleşik tabulardı. Öncelikle aklı teolojinin tutsaklığından kurtarmak, kapıları deneysel araştırmalara açmak gerekiyordu. Bacon, militan bir tutum içindeydi; yaşamını, tasımsal argümanlarını laf cambazlığı saydığı skolastik “bilginlerin” yetkisini kırmaya adamıştı.

Bacon’un önerdiği bilim, seçkin kişilerin bireysel etkinliği olmaktan çok, örgün, kurumsal nitelikte bir girişimdi. Bunun için tüm dillerde yazılmış değerli kitapları da içine alan zengin bir kitaplık, geniş botanik ve hayvanat bahçeleri, görkemli bir müze ve her türlü deneye yeterli büyük bir laboratuvar kurulmalıydı. Doğanın gizlerinin çözülmesi ve özlenen uygar dünyanın kurulması, ancak bu kuruluşlardan oluşan kompleks bir bilim merkeziyle gerçekleştirilebilirdi. Bacon, seçkin bilimadamlarını bünyesinde toplayan Kraliyet Bilim Akademisi’ni (The Royal Society) de bu amaçla kurmuştu.

Bacon, bilimin önemini vurgulamakla kalmamış, bilimsel yöntemi açıklama işini de üstlenmişti. Doğayı tanımak, doğa güçlerini denetim altına alma yolunda istenen sonucu verecek yöntemi belirlemek, başlıca amaçlarından biriydi. Ona göre gözlem ve deney, bilimsel araştırmanın asal özellikleriydi. Olgusal verileri toplayarak bunları belli bir düzen içinde işlemek dışında, doğayı tanımanın bir yolu yoktu.

Skolastik yaklaşımda olduğu gibi, doğruluğu sorgulanmaz birtakım peşin ilkelerden tümdengelimle olguları açıklamaya çalışmak kısır bir çabaydı. Doğru olan yöntem, gözlem veya deneyle olguları saptamak, toplanan verilerden indüksiyonla genellemelere gitmek, ulaşılan genellemelerden en kapsamlı olanları aksiyom (öncül ilke) olarak seçmekti. Tümdengelim (dedüksiyon), ancak bu aşamadan sonra yararlı olabilirdi.

Bacon, yöntem anlayışını ilginç bir benzetmeyle ortaya şu şekilde koymuştur: “Bilimadamı ne ağını içinden çekerek ören örümcek gibi, ne de çevreden topladığıyla yetinen karınca gibi davranmalıdır. Bilimadamı topladığını işleyen, düzenleyen bal ansı gibi yapıcı bir etkinlik içinde olmalıdır. “

Bacon’un, olgusal içerikten yoksun dedüktif çıkarımı yararsız saymakta haksız olduğu söylenemez. Gerçekten de Aristoteles’in tasımsal mantık yöntemiyle bilimde bir adım bile ileri gidilemeyeceği bilinmeliydi artık. Ama Bacon’un önerdiği tümevarım yönteminin de yeterli olduğunu söylemek güçtür. Tümevarımla yapılan genellemeler, olguları açıklayıcı değil, betimleyicidir.

Örneğin, tüm bakır tellerin iletken olduğu genellemesi, bakır telin neden iletken olduğunu açıklamamakta, yalnızca gözlemlenen bakır tellerin ortak bir özelliğini belirtmekle kalmaktadır. Betimleyici genellemelerin bilimde önemli yer tuttuğu elbette yadsınamaz. Ancak bilimin, olguları betimlemenin ötesinde daha önemli işlevi, olguları veya olgusal ilişkileri açıklamaktır.

Boyle’un yasasını alalım. Sabit sıcaklıkta, gazların hacimleri ile basınçlarının ters orantılı olduğu genellemesi, gözlemsel bir ilişkiyi dile getirmekle kalmaktadır. Bu ilişki ise ancak daha sonra, “gazların kinetik teorisi” olarak bilinen kuramsal ilkeyle açıklanabilmiştir. Bacon, gözleme dayanan genellemeler gibi açıklayıcı ilkelere de tümevarımla ulaşılabileceği yanılgısı içindeydi.

Oysa, hipotez ya da kuram oluşturmanın bilinen bir yöntemi yoktur. Bu bağlamda, bilimadamının deneyim, sezgi veya yaratıcı hayal gücünden sözedilebilir; ama indüktif, dedüktif ya da başka türden bilinen bir yöntemden kolayca söz edilemez, herhalde.

Bacon’un bilimsel yöntem anlayışındaki bir yetersizlik de, matematiğin bilimdeki işlevini kavrayamamış olmasıdır. İleri sürülen bir hipotez ya da kuramın olgusal olarak yoklanması, öncelikle o hipotez ya da kuramdan “öndeyi” denen test edilebilir önermelerin çıkarımını gerektirir. Bu ise uzun süreçli mantıksal bir işlem olup çoğu kez ancak matematiğin tümdengelim tekniğiyle olasıdır.

Ayrıca matematik, bilim için etkili bir dildir; özellikle fizikteki, yasa ve ilkelerin matematiksel denklemlerle dile getirilmesi, çıkarım işlemlerini kolaylaştırmanın yanısıra bilime daha güvenilir ve açık bir ifade gücü de sağlamaktadır.

Bacon, deneysel bilimin inançlı bir savunucusu, bilimsel yöntem bilincini ön plana çıkaran bir öncüydü. Ne var ki, onun kendi yaşam dönemindeki bilimsel çalışmaları yeterince izlediği söylenemez. Kepler’in ortaya koyduğu doğrulayıcı sonuçlara karşın, Kopernik dizgesini içine sindirememesi, üzerinde durulacak bir noktadır.

Çağdaşı Galile’nin, deneyle matematiği birleştirerek bilimsel yönteme kazandırdığı yeni kimliğin farkına varmamış olması da ilginçtir. Aynı şekilde, modern anatominin öncüsü Vesalius’un çalışmasına gereken ilgiyi göstermediği gibi, kendi hekimi Harvey’in, kan dolaşımına ilişkin buluşlarını da bir bakıma görmezlikten gelmiştir.

Değindiğimiz tüm yetersizliklerine karşın, Bacon’un bilimsel gelişme için gerekli ortamın hazırlanmasında oynadığı büyük rolün önemi tartışılamaz. Unutmamak gerekir ki, Bacon bir bilim adamı olmaktan çok, bilimi bağnazlığın tekelinden kurtarma savaşı veren bir düşünürdü. Bilimin daha sonraki gelişmeleri üzerindeki etkisi, bu gelişmelerin uygar yaşama yönelik kazanımlarına ilişkin öngörüleri gözönüne alınacak olursa, Bacon daima övgüyle anılacaktır.

Bacon, “bilgi kudrettir,” demiştir. Ancak yüzyılımıza gelinceye dek yalnız o değil hiç kimse, bilgelikle birleşmeyen bilginin, aynı zamanda bir yıkım aracı olarak da kullanılabileceğini düşünebilmiş değildir.

 

GalIleo GalIleI

(1564-1642) Modern bilimin oluşumunda ilk atılımlar astronomide kendini gösterdi; ama daha kapsamlı devrim 17. yüzyılda gerçekleşti. Temeli Galileo’nun dinamik konusundaki çalışmalarıyla atılan bu devrim, Newton mekaniğiyle yetkinliğe ulaştı.

Fiziğin “babası” diye anılan Galileo, aynı zamanda, güneş-merkezli sistem için sürdürdüğü mücadele ile düşünce özgürlüğüne öncülük etmiştir. Onun düşüncemize büyük bir katkısı da, deney sonuçları ile matematiği birleştirmesi, öylece bilimsel yöntemi bugünkü anlamda işlemiş olmasıdır. Şu sözleri ilginçtir:

Felsefe (bilim demek istiyor) gözlerimiz önünde açık duran “evren” dediğimiz o görkemli kitapta yazılıdır. Ancak yazıldığı dili ve alfabesini öğrenmedikçe bu kitabı okuyamayız. Kitabın yazıldığı dil, matematiğin dilidir; harfleri üçgen, daire ve diğer geometrik şekillerdir. Bu dil ve harfler olmaksızın, kitabın bir tek sözcüğünü anlamaya olanak yoktur.

Rönesans’ın büyük sanatçısı Michelangelo’nun öldüğü yıl dünyaya gelen, Newton’un doğduğu yıl dünyadan ayrılan Galileo, Francis Bacon, Descartes, Kepler ve Shakespeare gibi ünlülerle çağdaştı. Temelde Ortaçağ bağnazlığına bir “isyan” diye niteleyebileceğimiz Rönesans’ın son döneminde yaşayan Galileo, yeni arayış ve atılımlarıyla kendisini önceleyen Leonardo da Vinci ve Copernicus türünden evrensel bir yetenek, yeniçağın unutulmaz bir mimarıdır.

İtalya’nın eğik kulesi ile ünlü Pisa kentinde dünyaya gelen Galileo Galilei öğrenimine bir manastırda başladı. Babası kentin soylularındandı, ancak geliri sosyal konumuna koşut değildi; aile geçimini üstü-örtük biçimde müzik ve matematik çalışmalarıyla sağlıyordu.

Galileo’nun üstün yetenekleri daha küçük yaşında belirginlik kazanmıştı. Sanata büyük bir yatkınlığı vardı: ut ve org çalmanın yanı sıra güzel resim çalışmalarıyla da dikkati çekiyordu. ayrıca oyuncak türünden araç yapımında üstün el becerisine sahipti. O dönemde Pisa, kendi ölçüsünde bir sanat ve öğrenim merkeziydi.

Galileo tüm yeteneklerine gelişme olanağı veren canlı bir ortamda büyüdü. Babasının yönlendirmesiyle üniversite öğrenimine tıp fakültesinde başladı, ama hekimlik onu çekmiyordu. Fiziğe, bu arada Archimedes’in çalışmalarına özel bir ilgisi vardı. Bir rastlantı olarak geometri üzerine dinlediği bir konferans önüne yeni, kendisini büyüleyen bir dünya açar; tıp derslerim bir yana iterek önce kapı aralıklarından, sonra kayıtlı öğrencisi olarak matematik derslerini izlemeye koyulur.

Ne var ki, bir süre sonra ailesinin geçim sıkıntısı nedeniyle üniversiteden ayrılmak zorunda kalır; geçimini özel dersler vererek kazanmaya başlar. Çok geçmeden kimi buluş ve çalışmalarıyla adını duyuran Galileo, öğrenimini yarıda kestiği üniversitesine matematik okutmam olarak çağrılır.

Galileo başına buyruk bir kişidir. Meslek yaşamının daha başında bir yandan bilimsel çalışmalarıyla ün kazanırken, öte yandan Aristoteles geleneğine açtığı “savaş” nedeniyle çok geçmeden dışlanan biri olur. Üniversiteler bilimde Aristoteles düşüncesinin birer kalesiydi. Galileo’nun pervasız eleştirileri, açık sözlülüğü, dahası çevresini küçümseyici tutumu kolayca bağışlanamazdı. Pisa’da tutunması güçleşince patronu Dük’ün aracılığıyla Padua Üniversitesine matematik profesörü olarak geçmeyi başarır.

Galileo’nun başlıca ve en özgün çalışması fizikte “dinamik” diye bilinen nesnelerin devinimlerine ilişkin etkinliğidir. Bu çalışmanın bir sonucu eylemsizlik ilkesi, diğer bir sonucu serbest düşme yasasıdır. “Statik” demlen dengesel ilişkiler Archimedes’in buluşlarıyla açıklık kazanmıştı. Oysa devinim konusu Galileo’ya gelinceyedek yanlış anlaşılmıştı.

Örneğin, devinim içinde olan bir nesnenin kendi haline bırakıldığında duracağı, devinimini ancak bir dış gücün itmesi ya da çekmesiyle sürdürebileceği sanılıyordu. Galileo ise bu sanıya ters düşen bir düşünce oluşturmuştu: devinen bir nesne, dış etkenlerden serbest kaldığında, devinimini tekdüze bir hızla sürdürür. Buna göre, dış etkenler devinimin değil, devinimin değişmesinin nedenidir. “İvme” denen bu değişiklik devinimin hızında ya da yönünde olabilir.

Nesnelerin deviniminde dış güçlerin etkisinin hızda değil ivmede kendini gösterdiği düşüncesi Galileo’ya, serbest düşmeye ilişkin deneylerim açıklama olanağını da sağlar. Yerleşik öğretiye göre, bir nesnenin düşme hızı ağırlığıyla orantılıydı.

Örneğin, aynı yükseklikten bırakılan biri beş, diğeri bir kg ağırlığındaki iki nesneden birincisi yere ikincisinin aldığı sürenin 1/5′inde ulaşmalıydı. Söylentiye bakılırsa, Galileo herkesin inandığı bu düşüncenin yanlışlığını, Pisa Kulesi’nden değişik ağırlıklarda kurşun parçalarım atarak seyircilerine, bu arada özellikle derslerine gitmekte olan profesörlere ispatlamaya çalışmıştı.

Serbest düşme yasası oldukça basit bir denklemle şöyle dile gelmektedir: S=1/2 gt2. Buna göre, serbest (ya da boşlukta) düşen bir nesnenin aldığı mesafe, düşme süresinin karesiyle doğru orantılıdır. Bu ilişki ağırlıkları veya maddesel nitelikleri ne olursa olsun tüm nesneler için geçerlidir.

Devinime ilişkin eylemsizlik ilkesiyle serbest düşme yasasının kuramsal öneminin yanı sıra uygulamadaki önemi de çok geçmeden anlaşılır. Galileo, koruyucusu Tuscany Dükü’nün isteği üzerine top mermilerinin izlediği yolu incelemeye koyulur. Yatay olarak atılan bir merminin bir süre yatay gittikten sonra birden dikey düşüşe geçtiği sanılıyordu.

Galileo yatay hızın (hava direnmesi bir yana) değişmeden süreceğini eylemsizlik ilkesiyle ortaya koymuştu. Ancak buna, düşme yasası gereğince giderek artan düşme hızının da eklenmesi gerektiğini görmekte gecikmez. Eylemsizlik ilkesiyle serbest düşme yasasının ışığında bir merminin izlediği yol kolayca belirlenebilir: önce devinimin yatay olduğu düşünülürse, mermi ilk saniyede aldığı yol kadar ikinci saniyede de yol alır; sonra devinimin dikey düşüş olduğu düşünülürse, mermi düşme süresiyle orantılı bir hızla düşer. Basit bir hesaplamayla, bileşik devinimin parabola biçiminde bir yol çizdiği gösterilebilir.

Burada, dinamikte son derece önemli bir ilkenin uygulamadaki ilk örneğim bulmaktayız. “Paralel kenar yasası” diye bilinen bu ilkeye göre, birden fazla kuvvet aynı zamanda etkili olduğunda, sonuç sanki herbiri sırasıyla etki göstermiş gibi olur.

Örneğin, yol almakta olan bir geminin güvertesinde olduğunuzu düşünün: gemi ileri doğru yol alırken siz güvertenin bir yanından karşı yanına yürüyorsunuz. Bu demektir ki, siz hem karşı kenara hem de geminin devinim yönünde ilerlemektesiniz. Denize görecel konumunuzu belirlemek isterseniz, önce gemi ilerlerken durduğunuzu, sonra karşı kenara yürürken geminin durduğunu varsaymanız gerekir.

Bilimsel yaklaşımında Galileo bir yanıyla Kepler’e benzer bir tutum sergilemektedir: ikisinin arayışı da olguların gerisinde matematiksel ilişkiler bulmaya yöneliktir; şu farkla ki, Galileo için aranan ilişkiler mistik değil salt ussal niteliktedir. Onun gözlemden çok, ussal düşünceye verdiği önem şu sözlerinde de dile gelmektedir:

Aristarchus ile Copernicus’ta beni en çok şaşırtan şey, aklı duyularına egemen kılmaları, inançlarını yüzeysel gözlemlerin değil aklın temeline oturtmalarıdır. (Çünkü, duyu verilerine bakılırsa dünya güneşin çevresinde değil, güneş dünyanın çevresinde dönmektedir!)

Galileo astronom olarak yetişmemişti, ama başı asıl bu alandaki çalışmalarıyla derde girer. Copernicus sistemi onu gençlik yıllarından beri ilgilendirmekteydi. Teleskopun icadı sistemin doğruluğunu ispatlama fırsatı getirmişti ona. Serbest düşmeye ilişkin deneyleri bağnaz çevreleri öfkelendirmişti, ama engizisyonu fazla rahatsız etmemişti.

Bir Hollandalının iki mercekli bir araçla görme gücünü arttırdığını duyar duymaz çalışmaya koyulan Galileo, çok geçmeden, daha güçlü kendi teleskopunu oluşturarak, gökyüzüne çevirir. Gözlemleri arasında en önemlisi Jüpiter’in dört gezegeniydi. Her şeyi alt-üst eden öyle bir buluş doğru olamazdı. Çünkü resmi öğretiye göre, sabit yıldızlar dışında yalnızca yedi göksel nesneye (güneş, ay ve beş gezegen) olanak vardı.

Galileo bir şarlatan, teleskopu şeytanımsı bir araçtı. Öyle bir araçla gökyüzünü incelemeye kalkmak bile bağışlanmaz bir günahtı. Galileo kendi ülkesinde sinsi bir kampanya ile karşı karşıya gelmişti artık. Ama onu ülkesi dışından duyulan bir ses sevindirmekte gecikmez: bu ses Galileo’nun gözlemlerini benimseyen dönemin ünlü astronomu Kepler’in sesidir.

Galileo teologları öfkelendiren başka gözlemlerini de ortaya koymuştu. Bunlardan biri ay gibi Venüs’ün de evreleri olduğu gözlemiydi. Bir diğeri, ayın hep sanıldığı gibi pürüzsüz, yetkin bir nesne değil, dağ, vadi ve düzlükleriyle dünyaya benzer bir nesne olduğuydu. Teleskop ayrıca güneşte birtakım lekelerin varlığını da göstermekteydi.

Bu gözlemler “Tanrısal düzen” diye bakılan gökyüzünün hiç de kusursuz, yetkin bir şey olmadığı demekti. Kilise artık sessiz kalamazdı. Aldığı ilk ivedi önlem, kutsal kitabın kimi tümcelerine dayanarak iki buyruk ortaya koymak oldu:

Birinci buyruk: Güneşin dünyanın çevresinde dönmeyen, merkezde sabit olduğu düşüncesi kutsal öğretiye aykırı, saçma ve yanlış bir savdır.

İkinci buyruk: Dünyanın, merkezde sabit değil, güneş çevresinde bir gezegen olduğu görüşü felsefe açısından saçma ve yanlış, teoloji açısından gerçek inanca ters düşen bir savdır.

İkinci önlem, davranış ve düşüncesi bu buyruklara ters düştüğü gerekçesiyle Galileo’yu yargılamaktır. 1616′da Engizisyon önüne çağrılan Galileo istendiği üzere, Copernicus sistemini artık ne sözlü ne de yazılı hiç bir şekilde savunmayacağını bildirerek bağışlanmasını diler; sonra, aldığı talimat gereğince köşesine çekilerek bir süre suskunluk içine girer. Bir süre, çünkü suskunluk onun yaratılışına aykırı bir davranıştı.

Nitekim, dostu Kardinal Barberini’nin Papalık makamına gelmesiyle yüreklenen Galileo yeniden işe koyulur, Dünya’nın İki Büyük Sistemi Üzerine Diyalog adlı kitabını yazar. 1632′de yayımlanan kitapta iki sistemin (Ptolemy sistemi ile Copernicus sisteminin) görünürde yansız bir karşılaştırılması yapılmakta, birinden birine üstünlük tanınmamaktadır. Ama bu sadece bir görüntü.

Bir yandan güneş-merkezli sistemin doğruluğu birtakım ince tartışmalarla kanıtlanırken, öte yandan resmi görüşle sinsice alay edilir. Etkili bir dille kaleme alınan kitap piyasaya çıkmasıyla beklenmeyen bir ilgi toplar, Avrupa’nın hemen her ülkesinde geniş okuyucu kitlesi bulur. Bu ilgi karşısında iyice köpüren kilise yeniden harekete geçer; Galileo bir kez daha Engizisyon önüne çıkmaya zorlanır. Yaşlı ve hasta bilgin hücreye atılır, yargı önünde tövbe etmediği takdirde işkence göreceği söylenir. Galileo çaresizdir; eline verilen metni diz çökerek okur:

Ben Galileo Galilei, geçmişteki tüm yanlış ve aykırı düşüncelerimden dolayı huzurunuzda kendimi lanetliyor, bir daha öyle saçmalıklara düşmeyeceğime, kutsal öğretiye aykırı hiç bir fikir taşımayacağıma yemin ederim. Otuz yıl önce Bruno’yu yakarak cezalandıran Engizisyon, Galileo’ya daha yumuşak davranır, ev hapsine mahkûm etmekle yetinir. Yaşlı bilgin yaşamının son yıllarında çökmüştür, görme yetisini tümüyle yitirir; ama boş durmaz. Devinim üzerindeki araştırmalarını içeren en büyük yapıtını (İki Yeni Bilim Üzerine Diyalog) gizlice hazırlar, dostlarının aracılığıyla Hollanda’da yayımlatır.

Engizisyon Galileo’yu mahkûm eder; ama o mahkûmiyet Galileo’nun değil, dinsel bağnazlığın kendi ölüm fermanı olur. Kilise işlediği ayıbın ezikliğinden bugün bile tam kurtulmuş değildir.

 

Johannes Kepler

Johannes Kepler (1571-1630), Alman gökbilimci, fizikçi ve matematikçi. Tübingen Üniversitesi‘nde öğrenim gördü. 1591‘de yüksek lisans derecesi aldı. Graz’da matematik profesörlüğü yaptı. Bu dönemde yazdığı Mysterium cosmographicum (Evrenin Gizleri, 1596) adlı yapıtında açıkladığı gezegen sistemiyle ünlü astronomlar arasına katıldı. 1598‘de Graz’daki protestanların kenti terk etmelerinin istenmesi üzerine Kepler dönemin ünlü astronomu olan ve Prag‘da devlet matematikçisi olarak çalışan Tycho Brahe‘nin çağrısıyla Prag’a yerleşti. Tycho’nun ölümü üzerine İmparator II. Rudolf tarafından onun yerine atandı. Tycho Brahe’nin derlediği değerli astronomik gözlemlerden yararlanan Kepler, gezegenlerin hareketleriyle ilgili çalışmaları sırasında Mars‘ın yörüngesini incelerken kendi adıyla anılan yasaların ilk ikisini buldu. II. Rudolf’un yerine geçen kardeşi, Kepler’i Yukarı Avusturya devletleri matematikçisi olarak atadı. Linz‘de kaldığı 14 yıl içinde iki kitap yazan Kepler, burada üçüncü yasasını keşfetti.

1626‘da Avusturya’da Protestanlara karşı başlayan yıldırma ve baskı, Kepler’in önce Ulm, daha sonra Rogensburg kentlerinde zor bir hayat sürmesine neden oldu.

1627‘de Tabulae Rudophinae (Rudolf Cetvelleri) başlığı altında gezegenlerin temel tablolarını yayınladı. Kepler, astroloji gibi mistik olaylara inanmasına karşın astronomi bilimine olan büyük katkılarıyla bu bilimin çehresini değiştirdi.

Newton, “Daha ileriyi görebildiysem, bunu omuzlarından baktığım devlere borçluyum,” demişti. Bu devlerden biri Galileo ise diğeri Kepler’dir.

Kepler’e gelinceye dek Copernicus sistemine dayanaksız bir hipotez, ya da, işe yarar matematiksel bir araç gözüyle bakılıyordu. Kepler, sistemin kimi düzeltmelerle bilimsel doğruluğunu kanıtlamakla kalmadı, astronomiye mekanik bir kimlik kazandırdı.

Gençlik coşkusuyla işe koyulduğunda amacı mistik inancı doğrultusunda, “göksel alemin müzikal uyumunu” geometrik olarak belirlemekti; çalışmasını noktaladığında, astronomi matematiksel düzenlemenin ötesinde fiziksel bir gerçeklik kazanmıştı. Ders kitaplarında daha çok üç yasasıyla bilinen Kepler, uzay fiziğinde sonraki kimi önemli buluşların ipuçlarını da ortaya koymuştu. Bunların başında eylemsizlik ilkesiyle çekim kavramı gösterilebilir.

Johannes Kepler güney Almanya’da Weil kentinde dünyaya geldi. Dört yaşında geçirdiği ağır çiçek hastalığı görme duyumunu zayıflatmış, ellerinde sakatlığa yol açmıştı. Macera arayan sarhoş bir baba ile akıl dengesi bozuk bir annenin çocuğu olmasına karşın, Kepler’in öğrencilik yılları parlak geçer. Ruhsal güvensizlik içinde büyüyen Kepler, önce teolojiye yönelir; ancak üniversite öğreniminde bilim ve matematiğin büyüleyici etkisinde kalır; sonunda Copernicus sistemini benimsemekle kalmaz, sistemin doğruluğunu ispatlamak tutkusu içine girer.

Daha yirmiüç yaşında iken Graz Üniversitesi’nin çağrısını kabul ederek astronomi profesörü, ardından kraliyet matematikçisi görevlerini yüklenir. Ne var ki, rahat bir çalışma ortamı bulduğu Graz’da kalması fazla sürmez; dinsel çekişmede yenik düşen protestan azınlıkla birlikte kenti terk etmek zorunda kalır.

Kepler işsiz kalmıştır, ama bu ona meslek yaşamının belki de en büyük şans kapısını açar: ötedenberi çalışmalarına hayranlık duyduğu Danimarka’lı ünlü astronom Tycho Brahe’nin asistanı olur. Gerçi kişilik yönünden ustası ile uyum kurması kolay olmayacaktı; üstelik Tycho tanrısal düzene aykırı saydığı güneş-merkezli sisteme karşıydı. Ona göre gezegenler güneşin, güneş de dünyanın çevresinde dönmekteydi. Ne ki, çok geçmeden usta yaşamını yitirir (1601); gözlemeviyle birlikte yılların yoğun emeğiyle toplanmış son derece güvenilir gözlem ve ölçme verilerine Kepler sahip çıkar.

Kepler’in resmi görevi astroloji almanakları hazırlamaktı. Zaten yetersiz olan maaşı çoğu kez ödenmiyordu bile. Soyluların yıldız falına bakarak geçimini sağlıyordu. Astronomlar için ek kazanç kaynağı gözüyle bakıp bir bakıma küçümsediği astrolojiye inanmadığı da kolayca söylenemez.

Yukarda da belirttiğimiz gibi, Kepler’in amacı “göksel mimarlık” dediği düzende aradığı matematik uyumu kurmaktı. Graz’dan ayrılmadan önce yayımlanan Göksel Gizem adlı kitabında, gezegenlerin devinimlerini geometrik çizgi ve eğrilerle belirleme yoluna gitmiş, o zaman bilinen altı gezegene ait yörüngelerin, belli bir sıra içinde içice yerleştirilen beş düzgün geometrik nesnenin oluşturduğu altı aralığa denk düştüğünü ispata çalışmıştı (“Yetkin nesne” denen bu çok yüzlü cisimler şunlardır:

(1)  dört eşkenar üçgen yüzlü (piramit),

(2)   altı kare yüzlü (küp),

(3)   sekiz eşkenar üçgen yüzlü,

(4)   oniki eşkenar beşgen yüzlü,

(5)   yirmi eşkenar üçgen yüzlü.

 

Bilindiği gibi iki boyutlu düzlemde istenilen sayıda çokgen şekil çizilebilir; oysa üç boyutlu uzayda yalnızca sıraladığımız bu beş çok yüzlü düzgün nesne oluşturulabilir). Antik çağdan beri bilinen bu beş nesnenin gizemli bir niteliği olduğu inancı pek de yersiz değildi. Gerçekten, yetkin simetrik olan bu nesnelerin her biri tüm köşelerinin dokunduğu bir küre içine yerleştirilebilir. Aynı şekilde, her biri tüm yüzlerinin orta noktasına dokunan bir daireyi çevreleyebilir.

Örneğin, Satürn yörüngesini içeren küreye bir küp yerleştirilecek olsa Jüpiter’in küresi bu küpün içine; ya da, Jüpiter’in küresine bir piramit (dört eşkenar üçgen yüzlü nesne) yerleştirilecek olsa Mars’ın küresi bu piramitin içine tıpatıp uyacaktır. Aynı düzenleme geriye kalan gezegen yörüngeleriyle çok yüzlü düzgün nesnelerle de gerçekleşmektedir. Kepler en büyük coşkusunu bu düzenlemeye yönelik araştırmasında yaşamıştır.

Düzgün geometrik nesnelerle gezegen yörüngeleri arasında varsayılan ilişki olgusal temelden yoksundu kuşkusuz; ama, gezegenlere ait yörünge büyüklükleri arasında bir tür korelasyon olduğu düşüncesinde bir gerçek payı vardı. Nitekim Kepler’in yirmi yıl sonra formüle ettiği üçüncü yasası bu düşünceden kaynaklanmıştır.

Tycho’nun gözlemevine yerleşen kepler, gençliğinin çoğu akıl-dışı saplantılarından tümüyle kurtulmazsa da, giderek daha olgun, olgusal verilere daha bağlı bir kimlik kazanır. Tycho’nun ona verdiği görev gezegen yörüngelerini belirlemeye yönelikti; incelemeye koyulduğu ilk yörünge de beklentiye en çok aykırı düşen Mars’ın gözlemlenen yörüngesiydi.

Kepler, yoğun bir uğraşa karşın yıllarca, gözlem verileriyle uyum kurmaya çalıştığı çembersel yörünge arasındaki farkı gideremedi. Bu demekti ki, çembersel yörünge beklentisinde bir yanlışlık olmalıydı. Ne var ki, göksel düzeyde yetkinlik arayışı içinde olan Kepler bu olasılığı bir türlü içine sindiremiyordu. Çembersel olmayan bir yörünge (ki, Kepler için bu bir “pislik”ti) nasıl düşünülebilirdi? Ama olgular da bir yana itilemezdi!

Bu tür açmazların etkisinde Kepler zamanla astronomide geometrik uyum arayışından fiziksel etki arayışına girer. Copernicus için güneşin merkez konumu salt matematiksel bir belirlemeydi; oysa Kepler buna fiziksel bir gerçeklik tanıma gereğini duymaya başlar. Tüm gezegen yörünge düzlemlerinin güneşin merkezinden geçmesi olayı, bu yönelişi doğrulayıcı nitelikteydi. Mars’ın yörüngesi üzerindeki çalışması bir olguyu daha gün ışığına çıkarmıştı: gezegenin yörüngesi üzerindeki hızının değişik noktalarda değişik olduğu gerçeği.

Öyle ki, gezegenin güneşe yaklaştığında hızı artmakta, uzaklaştığında hızı azalmaktaydı. Kepler bu ilişkiyi ikinci yasasında şöyle dile getirir: güneş ile gezegen arasındaki yarıçap vektörü yörünge düzleminde eşit zamanlarda eşit alanlar süpürür. Yaptığı tüm ölçmelerin doğruladığı bu ilişki de çembersel yörünge beklentisiyle bağdaşmamaktaydı.

Kepler ister istemez başka bir yörünge biçimine yönelmek zorundaydı. Gözlemler yörüngenin elips biçiminde olduğunu ortaya koyuyordu. Mars’ın yörüngesine ilişkin bu buluşunu Kepler daha sonra birinci yasası olarak tüm gezegenler için genelleme yoluna gider: Her gezegen, bir odağında güneşin yer aldığı bir elips çizerek devinir.

Kepler ilk iki yasasını, 1609′da yayımlanan Yeni Astronomi adlı kitabında ortaya koymuştu. Üçüncü yasasını aradan dokuz yıl geçtikten sonra oluşturur: Bir gezegenin yörüngesini tamamlamada geçirdiği sürenin karesi, güneşe olan ortalama uzaklığının küpüyle orantılıdır. Buna göre, gezegenin periyodik süresini T ile, yörüngesinin ortalama yarı çapım r ile gösterirsek, r3/T2 oranı tüm gezegenler için aynıdır. “Harmonik yasa” diye bilinen bu ilişki, yörüngelerini tamamlama süresi bakımından gezegenlerin mukayesesine olanak vermektedir.

Daha da önemlisi, ilişkinin ilerde Newton’un formüle ettiği yerçekimi yasasına sağladığı ipucudur. Oysa Kepler bu son buluşuna, gençlik yıllarından beri arayışı içinde olduğu “küreler uyumunun” formülü gözüyle bakıyordu. Uyumsuz bir evrenin onun için bir anlamı yoktu. Güneş gezegenleri yönetme gücüne sahipse, göksel devinimlerin r3/T2 formülünde dile gelen türden bir ilişki içermesi gerekirdi.

Kepler’in gerçeği bulma yolunda verdiği çabanın bir benzerini bilim tarihinde göstermek güçtür. Şu sözlerinde derin araştırma tutkusu az da olsa yansımaktadır: “Çalışmamın karmaşık görünen sonuçlarını izlemede zorlanıyorsanız, bana kızmayınız; çektiğim sıkıntılar için bana acıyınız. Sunduğum her sonuca yüzlerce kez yinelediğim sınama ve hesaplamalarla ulaştım. Sadece Mars’ın yörüngesini belirlemem beş yılımı aldı. ”

Copernicus gibi Kepler de Pythagoras’dan kaynaklanan sayı mistisizminin etkisindeydi. Evrenin geometrik bir düzenlemeyle kurulduğu inancını hiç bir zaman yitirmedi. Onun gözünde güneş tanrısal bir güçtü. Güneş sisteminde yalnızca altı gezegenin bulunmasına (Uranüs, Neptün ve Plüton henüz bilinmiyordu) koşut olarak geometride yalnızca beş düzgün çok yüzlü nesneye olanak olması rastlantı değil, merak konusu bir gizemdi. Astronominin temelini oluşturan üç yasası bu gizemin büyüsünde ömür boyu sürdürdüğü çalışmanın bir bakıma yan ürünüdür.

Kepler’in kendisi gibi dönemin bilim çevrelerinin de (bu arada Galileo’nun) bu yasaları yeterince önemsediği söylenemez. Newton’un bir başarısı da, Kepler’in kitaplarında adeta gömülü kalan bu yasaların gerçek önemini kavramış olmasıdır.

Kepler asıl hayal ettiği şeyi (göksel kürelerin müzikal uyumunu) belki gerçekleştiremedi; ama gerçekleştirdiği şey ona bilim tarihinde “Astronominin Prensi” unvanını kazandırmaya yetti.

 

WIllIam Harvey

(1578-1657) Astronomide Kopernik’in, fizikte Galileo’nun başlattığı devrimci atılımı tıpta Harvey gerçekleştirir. Kan dolaşımı üzerindeki çalışmasıyla bilim tarihine geçen Harvey, yalnız bu çalışmasıyla değil, tıp alanında yerleşik önyargıları kırmakta gösterdiği dirençle de öncü kişiliğini kanıtlamıştır. Özel yaşamı renksiz ve tekdüze geçen Harvey’in bilim adamı olarak büyüklüğünü iki özelliğinde bulmaktayız:

(1) Gerçeğin, kökeni hangi otoriteye dayanırsa dayansın önyargılarda değil, nesnel gözlem verilerinde olduğu inancı;

(2) Dini inançlardan kaynaklanmış bile olsa her türlü bağnazlığa karşı durma cesareti.

Yaşadığı dönemde büyücülük, resmi yasağa karşın, halk kesiminde yaygın bir uygulamaydı. O sırada yıkıma yol açan büyük bir deniz fırtınasından hükümet büyücüleri sorumlu tutmuştu. Bu gerekçe ile yakalanan bir grup savunmasız zavallı insanı ölüm cezasından Kral’ın başhekimi Harvey kurtarır. Harvey’in, doğal yıkımlarla”büyücülük” denen pratiğin bir ilişkisi olmadığına başta Kral olmak üzere yetkilileri inandırması kolay olmamıştı, kuşkusuz.

İngiltere’de küçük bir kasabada l Nisan günü dünyaya gelen William çocukluğu boyunca arkadaşlarının, “Nisan Balığı” sataşmalarına hedef olmuştu. Varlıklı babası aynı zamanda kentin belediye başkanıydı. William on beş yaşına geldiğinde üniversiteye girmeye hazırdı; sıkı bir sınavdan geçerek Cambridge’e girmeyi başarır.

Bilimin diğer kollarında olduğu gibi tıpta da gözlem ve deneyin ağırlık kazanmaya başladığı dönemdi bu! Öyle ki, üniversite’ye ilk kez, ölüm cezasına çarptırılan iki suçlunun cesetleri üzerinde inceleme yapma izni verilmişti. William’ın tıp alanında yaşam boyu yoğunlaşan ilgisi, işte teşrih masasındaki bu incelemeye katılmasıyla başlar.

Ortaçağ boyunca astronomi ile tıp ön planda tutulan başlıca iki çalışmaydı. Astronominin büyük otoritesi Ptolemy, Aristoteles’çi düşüncenin dokunulmaz simgesiydi.

Tıp’ta ise öğretisi tartışmasız kabul edilen otorite Bergamalı Galen (M. S. 131-201) idi. Roma imparatoru Marcus Auerius’un hekimi olan Galen, özellikle anatomi alanındaki çalışmalarıyla ünlüydü. O zaman insan cesedi üzerinde incelemeye izin yoktu. Galen ister istemez çalışmalarında domuz, köpek, maymun gibi hayvan ölüleriyle yetinmek zorundaydı. Bu yüzden, incelemeleri sınırlı kalmanın ötesinde birtakım yanlışlıklara düşmekten kurtulamaz.

Rönesans döneminde insan cesedi üzerinde inceleme serbest bırakılmıştı. Ancak anatomi profesörleri teşrih işini asistanlarına bıraktıkları için önemli bir ilerleme sağlanamıyor, Galen öğretisi etkisini sürdürüyordu.

Bu geleneği ilk sorgulayan bilim adamı Andreas Vesalius olur. Padua Üniversitesi’nin 23 yaşındaki bu genç profesörü (1514-1561) teşrih çalışmalarını kendisi üstlenir, inceleme yöntem ve araçlarını geliştirmede önemli adımlar atar. “İnsan Vücut Yapısı Üzerine” adlı yapıtında gözlem ve bulgularını ortaya koyan Vesalius, Galen öğretisinde saptadığı yanlışlıkları belirtmekten de geri kalmaz.

Anatomi gözlemsel bir bilim olma yoluna onunla girer. Ne var ki, Vesalius fizyolojideki çalışmalarında aynı başarıyı gösteremez. O da geleneksel öğretiye uyarak vücuda alınan besinin önce karaciğerde “doğal ruh” kazandığı, sonra kalpte yaşamsal ruha, beyinde ise hayvansal ruha dönüştüğü inancındaydı.

Gerçek bir nesne olmaktan çok bir özellik saydığı hayvansal ruhu, sinir sistemi aracılığıyla, bedensel devinim ve davranışları düzenleyen bir güç olarak algılıyordu. “Metafiziksel” diyebileceğimiz bu tür saplantılarına karşın, Vesalius’un bir gözleminin bugün de geçerliğini koruduğu söylenebilir: “Beynin yapısına gelince, şimdiye dek incelediğim maymun, köpek, kedi vb. dört ayaklı hayvanların nerdeyse ayrıntılarda bile insanla benzerlik içinde olduğunu gördüm. ”

Harvey, Cambridge’de başladığı tıp öğrenimini, Vesalius ve Galileo’nun adlarıyla ün kazanan Padua Üniversitesi’nde sürdürür. Ama genç bilim adamı aradığını bulamaz: Vesalius’un açtığı çığır ölümünden sonra terk edilmiş, Galen öğretisi yemden egemenliğini kurmuştu. Hayal kırıklığına uğrayan Harvey duruma katlanır, diplomasını alıncaya dek tepkisini ortaya koymaz.

Ülkesine döndüğünde, öğrenimine ara verdiği üniversitesi onu öğretim görevlisi olarak kabul eder. Esmer ve çelimsiz Harvey büyük bir istençle koyulduğu çalışmasında sergilediği başarı ve üstün yeteneğiyle çok geçmeden öncü konumuna gelir. Aynı zamanda Saray’ın başhekimidir. Kral Birinci Charles’ın Cromwel karşısında yenilgiye uğrayıp idam edilmesine karşın, Harvey saygınlığını yitirmez, araştırmalarını daha yoğun bir çabayla sürdürür. Şimdi sorulabilir: William Harvey’i bilimin öncüleri arasına yücelten başarısı neydi?

Bu soruya vereceğimiz yanıt iki nokta içermektedir. İlk nokta Harvey’in titiz ve sabırlı bir gözlemci olarak verdiği örnektir. Kalbin yapı ve işleyişine ilişkin yerleşik öğreti önyargıya dayanan hatalarla yüklüydü. Örneğin, damarlardaki kanın maviye çalması, arterlerdeki kanın ise açık kırmızı olması iki ayrı sistem olarak algılanmıştı. Ancak kanın bir sistemden diğerine nasıl geçtiği bir sorundu.

Galen ve onu izleyenler geçişi, septum’un (kalbi ortadan ikiye bölen dikey duvarın) ince gözenekli bir doku olduğu varsayımıyla açıklamışlardı. Oysa septum hiç bir sızıntıya elvermeyen katı bir yapıya sahiptir. Düzeltilmesi gereken bir başka hata da, kanın akışını sağlamak için kalple birlikte arterlerin de genleştiği inancıydı.

Değineceğimiz ikinci nokta, Harvey’in inceleme yöntemidir. Hayvanları canlı olarak incelemeyi ilk kez Harvey denemiştir. Göğüslerim açarak kalbin atışını doğrudan gözlemliyordu. Kalp değişimli olarak atan ve duran bir işleyiş içindeydi. Eline aldığında kalbin gene nöbetleşe sertleşip gevşediğini duyumsuyor; sertleştiğinde organın kasılıp solgunlaştığını, gevşediğinde genişleyip kırmızılaştığını görüyordu.

Gözlemleri sonunda onu şöyle bir yargıya ulaştırır: Kalp “içi boşluk” pompa gibi çalışan bir kastır; öyle ki, eyleme geçtiğinde iç boşluğu daralmakta ve kan dışa yönelik akışa geçmektedir; gevşediğinde ise tam tersine kan genişleyen iç boşluğa dönmektedir.

Kalbin kasılmasıyla atar damarların kan taşıma dışında nabız atışı da verdiğini belirleyen Harvey, taşınan kanın miktarını da saptama yoluna gider. Kalbin her atışında yaklaşık 30 gram kan pompaladığını hesaplar (Bu, dakikada 72 vuruş olduğuna göre bir dakikada yaklaşık 5 litre, bir günde 6200 litre demektir).

Şaşırtıcı bulduğu bu olguyu Harvey açıklamadan duramazdı. Bu kadar çok kanın pompalanması ancak çevrimsel bir akışla olasıydı. Öyleyse, kan dolaşımı hipotezi açıklayıcı tek seçenekti onun için. Bu açıklamada kalbin çalışması, her türlü gizemli güçlerden uzak, salt mekanik bir işleyiş olarak algılanmıştır (Kan dolaşımı hipotezinin olgusal olarak doğrulanması mikroskopun icadını bekler. İtalyan bilgini Malpighi 1661′de mikroskopla kurbağa akciğerinde, atar damarlarla toplar damarların, kılcal damarlar aracılığıyla biribirine bağlı olduğunu saptar).

Harvey incelemelerini daha ileri götürerek, damarların kanın akışına tek yönlü geçit verdiğini belirler. Bu geçitler “çek-valf işlevi gören kanatlarla donatılmıştır. Kanatlar atar damarlarda kanın vücuda akışını, toplar damarlarda kalbe dönüşünü sağlamaktadır.

Harvey kan dolaşımına ilişkin buluşunu 1628′de Latince yazdığı küçük bir kitapta (Hayvanlarda Kalp ve Kan Devinimine İlişkin Anatomik Bir Tez) ortaya koymuştu. 1651′de yayımlanan ikinci kitabı embriyoloji konusunda Antik Çağdan o güne uzanan yaklaşık iki bin yıllık dönemde yapılan en önemli incelemeyi içeriyordu.

Gerçeği önyargılarda değil, nesnel gözlem verilerinde arayan, kutsal da sayılsa dogmalara boyun eğmeyen Harvey, bilimdeki başarılarının yanı sıra özgür araştırma geleneğinin kurulmasında ödün vermez kişiliğiyle de bilim tarihinde saygın yerini almıştır.

 

René Descartes

René Descartes (1596-1650) Fransız matematikçi, bilimadamı ve filozof. Batı düşüncesinin son yüzyıllardaki en önemli düşünürlerinden biri.

Hayatı: 1596 yılında La Haye (şimdi Descartes), Touraine, Fransa‘da doğan ünlü düşünür, eğitimini Anjou‘da bulunan bir Cizvit kolejinde gördü. Sağlık bakımından zayıf olan Descartes, özellikle çocukluğunda sık sık hastalıklarla boğuştu. 1616 yılında Poitiers Üniversitesinden hukuk diplomasını aldı. Gençlik yıllarında çeşitli dönemlerde orduda hizmette bulundu. Bu hizmetlerin dışında Avrupa’nın birçok ülkesine yolculuklar yapıp, çeşitli şehirlerde yaşadıktan sonra 1628 yılında Fransa’ya geri döndü ve felsefe ve optik üzerine değişik deneyler yaptı. Aynı yıl Hollanda‘ya yerleşti.

Hayatı boyunca geç kalkma alışkanlığı oldu. 1649 yılında, zamanın İsveç Kraliçesi Christina’nın davetiyle Stokholm‘a yerleşti ve burada kraliçeye dersler vermeye başladı. Kraliçenin isteğiyle, filozofun uyanık olmaya alışık olmadığı kadar erken bir saat olan, sabah beşte yapılan dersler ve ülkenin soğuk iklimi yüzünden Descartes, İsveç’e gelişinin birkaç ay ardından 11 Şubat 1650′de Zatürreden dolayı yaşamını yitirdi.

Descartes bilime ve matematiğe önemli katkılarda bulunmuştur. Optikte yansımanın temel kanununu bulmuştur; geliş açısı gidiş açısına eşittir. Matematiğe olan en büyük katkısı ise analitik geometri üzerine olmuştur. Cebirin geometriye uygulanması üzerine çalışmıştır. Kartezyen Geometri ifadesini ortaya atmıştır. Eğrileri onları üreten denklemlere göre sınıflandırmıştır. Alfabenin son harflerini bilinmeyen çokluklar için, ilk harflerini de bilinen çokluklar için kullanmıştır.

Descartes’ın felsefe tarihindeki önemi, kilise odaklı orta çağ felsefesini içinde bulunduğu darboğazdan çıkarıp Yeni Çağ‘a taşımasından kaynaklanmaktadır. Descartes’ın çalışmaları “Akılcılık” akımının doğmasına yol açmıştır.

Başta Spinoza ve Leibniz olmak üzere eserleri pek çok önemli filozofu etkilemiştir.

Filozofun görüşleri, başta “Düşünüyorum öyleyse varım” (Cogito ergo sum) çıkarımı olmak üzere, günümüzde de halen pek çok eserde alıntı olarak bulunabilmektedir.
“Kesin olan bir şey var. Bir şeyin doğruluğundan şüphe etmek. Şüphe etmek düşünmektir. Düşünmek ise var olmaktır. Öyleyse var olduğum şüphesizdir.  Düşünüyorum, o halde varım. İlk bilgim bu sağlam bilgidir. Şimdi bütün öteki bilgileri bu bilgiden çıkarabilirim. “

Düşünceleri kendinden sonraki bütün filozofları etkilemiştir. 17 ve 18. yüzyıllarda Descartes’ın etkisi kolayca görülebilir. Locke, Hume, Leibniz ve Kant; Descartes’ın düşüncesine yanıt vermeye çalışmışlardır.

Bu bakımdan modern felsefenin babası sayılmaktadır.

 

TORICELLI

Evangelista Torricelli (1608-1647) Açık hava basıncı üzerine yaptığı deneyleriyle tanınan İtalyan fizik ve matematik bilgini. Hava Basıncının varlığını ortaya koydu ve bunu ölçtü.

Floransa’nın suyolcuları ümitsizlik içindeydi. Zira Dük’ün sarayına içme suyunu çıkaracak emme tulumbalar görevini yapmıyordu. Su, birinci, kata bile gelmiyordu. Ünlü bilgin Galileo Galileo bile bu olayın nedenini açıklayamamıştı.

Çocukluğunda matematiğe olan merakıyla dikkatleri çekti. 1627′de Roma‘ya giderek, hidrolik biliminin kurucusu ve Galilei‘nin talebesi olan Benedetto Castelli ile birlikte çalıştı. 1641′de Galilei ile mektuplaşmaya başladı. Aynı sene, Castelli nin tavsiyesi üzerine Galilei, Torricelli’yi Tuscany‘ye davet etti. Galilei ile görüştükten birkaç hafta sonra, Galilei ölünce, Tuscany büyük dükü Torricelli’yi onun makamına tayin etti. 1644 yılında geometri ve mekanik üzerinde bir kitap yayınladı. Matematik sahasında mühim bir boşluğu dolduran bu kitapta aynı zamanda Galilei’nin mekanik üzerindeki ilk çalışması, birbirine bağlı cisimlerin ortak ağırlık merkezleri aşağıya doğru hareket ederken, ani hareket edebilecekleri prensibi bir neticeye bağlanıyordu. Torricelli, bu çalışmalarını yaparken açık hava basıncı üzerindeki deneylerinde de devam etti. Basınçtan faydalanarak, civa doldurulmuş tüplerle yaptığı deneyler neticesinde, deniz seviyesinde 1cm²ye düşen basıncı 1033 gr/cm² olarak tespit etti. Geometri ve mekanik alanındaki fikirlerini ise ilk önceleri kimse önemsemedi. Torricelli aynı zamanda hocası Galileİ’nin teleskobunu ve kendi mikroskobunu geliştirmeye uğraştı.

1643′de Torricelli, hava basıncını ölçmek için cıvalı barometre denilen cihazı icat etti. Toricelli deneyini yaparken hava basıncını ölçmek için 80 ile 90 cm boyunda, bir ucu kapalı cam boru alınır. Borunun içi tamamen cıva ile doldurulur. (Boruyu doldururken içinde hava kalmamasına dikkat edilmelidir. Bunun içinde cıvayı borunun cıva ile doldurup bir ucunu kızgın bir demirle kapatmalıyız. )

Borunun açık olan ucunu parmakla kapatarak, içinde cıva olan çanağa daldırılır. Bir müddet beklenilir ve cıva seviyesi yavaş yavaş düşer. Cıva seviyesinin düşmesi durunca denge durumu meydana gelmiş olur.

Bu dengeyi, dışarıdaki havanın (Açık hava)basıncının çanaktaki sıvı (cıva) üzerine yaptığı basınç sağlamıştır. Çanaktaki cıvanın açık yüzünden itibaren, borudaki cıvanın yüksekliği ölçülerek, cıvanın özgül ağırlığı (13,6 gr/cm3 ) ile çarpılarak cıvanın yaptığı basınç bulunur. Bu basınç aynı zamanda kendini dengede tutan açık hava basıncına da eşit olur. Normal şartlarda (0 o C de, açık havada ve deniz seviyesinde) bu yükseklik 76 cm kadardır.

Bu yükseklik (cıva yüksekliği) her zaman 76 cm olmaz. Bu sayı, ölçünün yapıldığı yere göre ve havanın o günkü basıncına göre değişik değerler alır.

Alının boru, hangi şekilde olursa olsun, cıva sütunun düşey yüksekliği hep aynı kalır. 76 cm cıva basıncına 1 atmosfer (atm) denilir.

Toricelli’nin tüpü hava basıncının değişikliklerini ölçmeye imkân verdi. Bunun üzerine söz konusu aygıta barometre adı verildi. Floransa’da Dük’ün sarayına su getirilmekle uğraşan kişilere gelince, suyu yükseğe çıkarmak için basit, fakat zekice bir usul buldular; birbirini takviye eden iki emme tulumbasından yararlandılar.

Ben Toriçelli deneyinde civanın neden kullanıldığını öğrenmek istiyorum cıva yerine su olsaydı dediğimizde 1033 çıkıyor ya, bu nasıl oluyor? Yani gerçek suyu koysak seviye 1033 mü olacak veya yağda hep cıvaya göre yapılıyor normal şartlarda daha kolay bir şey koymamış da cıva koymuş yoğunluğu yüksek başka bir şey koysaydı olur muydu veya su koysaydı olur muydu? Neden peki her şey cıvaya göre yapılıyor?

İtalyan bilim adamı Evangelista Toriçelli’nin, havanın bir ağırlığı olduğunu ispatlamak üzere 1643 yılında yaptığı deneyde kurduğu düzenek, barometrenin icadı olarak da bilinir. Toriçelli bu meşhur deneyinde ağzına kadar cıva doldurduğu, bir ucu açık 100cm uzunluğundaki cam sütununu ters çevirip cıva çanağına daldırdığında, cıva sütununun yüksekliğinin 76cm’ye düştüğünü ölçmüştür. Diğer bir deyişle; havanın (atmosferin) bir ağırlığı olmaması durumunda tamamen cıva çanağına boşalması gereken tüp içerisindeki cıvanın, havanın çanaktakı cıvaya uyguladığı basınç nedeniyle bir miktar cıva, tüp içerisinde yukarıya itilmiştir. Burada cam tüpün çapının önemli olmadığından ve Toriçelli’nin sıvıların sıkıştırılamadığından (bkz. Bilim ve Teknik Web Sitesi, Merak Ettikleriniz, Soru No: 159) haberdar olduğundan söz etmeye gerek yok sanırım.

Bundan sonrası çok kolay: Ağırlığını ölçmek istediğimiz nesneleri terazinin diğer kefesine ağırlık ekleyerek dengelediğimiz gibi, cam sütun içinde yükselip, belli bir noktada dengede kalan cıvanın ağırlığı, cıva çanağının üzerindeki havanın ağırlığı ile aynı olmalıdır. Buradan yola çıkarak, [cıva sütununun taban alanı x yüksekliği x cıvanın özgül ağırlığı = sütun içindeki cıvanın ağırlığı = atmosferdeki havanın ağırlığı] ilişkisini kurmak, Galile’nin parlak zekalı öğrencisi için zor olmamıştır herhalde.

 

BlaIse Pascal

Blaise Pascal (1623-1662 Fransa), Fransız matematikçi, fizikçi ve filozof. Babası kültürlü bir adamdı. Pascal yedi yaşına gelince, babası Paris‘e yerleşti. Yedi yaşına gelen parlak çocuk öğrenimine başladı. Kendisi gibi çok güzel ve kültürlü iki kız kardeşi vardı. Özellikle Jak Qualine, Pascal’ın yaşamında önemli rol oynamıştır. Kız kardeşinin bu etkisi bazen iyi, fakat çoğu kötü yönde olmuştur. Bir Fransız matematikçi, fizikçi ve aynı zamanda teolojist olan Blaise Pascal, Etienne Pascal’in üçüncü çocuğu ve tek oğluydu. Daha üç yaşındayken annesinin ölümü üzerine yetim kalır. 1632 yılında babası dört çocuğuyla beraber Clermont’u terk ederek Paris’e yerleşir.

Pascal doğduğunda, Descartes yirmi yedi yaşındaydı. Descartes öldükten sonra Pascal daha on iki yıl yaşadı. Newton’dan sadece birkaç yıl önce doğmuştur. Descartes ve Fermat gibi büyük matematikçilerle çağdaş olması bir yerde kendisi için bir şanssızlıktı. Bu nedenle, tek başına oluşturabileceği olasılıklar kuramının keşfini Fermat’la paylaştı. Kendisini harika çocuk diye ünlü yapan yaratıcı geometri fikrini, kendisinden daha az ünlü olan Desargues’dan esinlendi. Daha çok din ve felsefe konularına eğildiği için matematiğe az zaman ayırdı. Kız kardeşi ona bu konuda egemendi. Buna karşın, yapabileceğinin çok daha fazlasını verdi. Babası antiortodox olduğu için O’nu kendisi yetiştirmeye karar verir. Kendisi de zamanının iyi matematikçilerinden olan Etienne Pascal, oğlunun 15 yaşından önce matematik çalışmaması gerektiğine karar vererek evini matematik dokümanlarından arındırır. Fakat bu küçük Pascal’in sadece matematik merakını ateşler, 12 yaşında kendisi geometri çalışmaya başlar. O zamanlarda üçgenin iç açılarının toplamının, iki dik açının toplamına eşit olduğunu bulur, bunun üzerine babası teslimi silah eder ve ona incelemesi için Euclid’in teoremlerini içeren dokümanları verir. Yani matematikle ilgisi çocukluk döneminde matematik eğitimi almadan başlar, sonraları babasıyla beraber Academie Parsienne deki derslere katılmaya başlar, 16 yaşına geldiğinde burada aktif olarak rol alır, ve profesör Girard Desargues in bir numaralı yardımcısı ve öğrencisi olur. Bu esnada özellikle konikler üzerinde çalışarak konu hakkında kitapçık yayınlar.

1639 yılında da Pascal’ın Esrarengiz Altıgeniyle geometriye katkıda bulunur. Pascal, çok erken gelişen bir çocuktu. Fakat, vücutça oldukça zayıftı. Bunun tersine, kafası çok parlaktı. Öğrenimi başlangıçta çok başarılı geçiyordu. Çok küçük yaşta olmasına rağmen, matematiğe gösterdiği ilgi çok dikkati çekiyordu. Hatta, matematik problemleriyle gece gündüz uğraşmaya başladı. Sağlığının bozulacağından kuşkulanan babası, bir aralık onun matematik çalışmasına engel olduysa da, onun bu davranışı Pascal’ın matematik çalışmasına daha çok yöneltti. Geometri çalışmak için oyunlarını bıraktı. On iki yaşında babasına, geometrinin ne demek olduğunu sordu. Euclides’in “Elements” adlı geometri kitabını kısa bir zaman içinde yutarcasına bir roman gibi okudu. Hiç bir yardım görmeden ve hiç bir geometri okumadan, çok küçük yaşta bir üçgenin iç açılarının toplamının 180 derece, yani iki dik açı olduğunu kanıtlamıştır. Daha önce, hiç bir kitabı okumadan, Euclides’in birçok önermesini ispatlamıştı, Yine, Pascal hakkında abartma yapmaktan özellikle kaçınan kız kardeşi Gilbert’in anlattıklarına göre; Pascal Euclides’in ilk otuz iki önermesini Elements adlı kitabındaki sıraya göre bulmuştur. Otuz ikinci önerme ise, bir üçgenin iç açılarının toplamı ile ilgili ispatıdır.

Daha 16 yaşındayken konikler üzerine bir inceleme yazdı. 1642′de bir hesap makinası icat etti. Matematikle uğraşan babasıyla birlikte Paris Mersenne Akademisi’ne kabul edildi. Pascal on dört yaşına gelince, Mersenne tarafından yönetilen ilmi tartışmalara kabul edildi. Bu tartışmaların yapılması, Fransız İlimler Akademisini doğurdu. Pascal kendi kendine bir geometrici olmuştu. Baba Pascal’ın hükümet makamlarıyla boğuşması aileyi kötü duruma düşürdü. Güzel ve parlak kız kardeşi Jacqueline, vergi konusunda babası ile anlaşmazlığa düşen Cardinal de Richelieu’yu eğlendirmek için, önünde oynatılan bir oyunda kendisini tanıtmadan oyuna çıkar. Kendini hayran eden artistin kim olduğunu öğrenen Cardinal, tüm aileyi bağışlar ve ondan sonra baba Pascal’a bir memurluk verir. Pascal, on altı yaşından önce, 1639 yılında, geometrilerin en güzel teoremini ispat etti. On dokuzuncu yüzyılda yaşayan İngiliz matematikçisi ünlü Sylvester, Pascal’ın bu büyük teoremine “kedi beşiği” adını vermiştir. Pascal, on bir yaşına gelince sesler hakkında bir eser vermiştir. On altı yaşındayken, konikler üzerine bir eser yazarak, ünlü Descartes’i hayretlere düşürmüştür. On sekiz yaşına gelince, şimdi Paris sanayi müzesinde saklanan hesap makinesini bulmuştur. Fizikte, havanın ağırlığını, sıvıların denge halini ve basıncı hakkında Pascal kanunlarını bulmuştur. Apollonius ve başkalarının çalışmalarını birer sonuç kabul eden dört yüz tane önerine ortaya koymuştur. Bu eserin tümü basılamadığı için, bir daha da ele geçmemek üzere kaybolmuştur. Fakat, Leibniz bu eserin bir kopyasını görmüş ve onu inceleme şanslılığına ermiştir. Pascal’ın bu eseri geometrik bir metrik olmayıp bir izdüşüm geometrisidir. Aristo, matematiği çokluklar ilmi diye tanımlıyordu. Oysa Pascal’ın geometrisinde çokluk yoktur.

Pascal, on yedi yaşından ölümü olan otuz dokuz yaşına kadar ızdırapsız ve acısız gün görmedi. Hazımsızlık, mide ağrıları, uykusuzluk, yan uyuklamalar ve bu ağrıların verdiği gece kabusları onu yedi bitirdi. Böyle olmasına karşın, yine de bu ağrılar içinde durmadan çalışıyordu. Pascala göre rastlantı geometriye dökülebilir. O’nun olasılıklar hesabına yaklaşımı, Pascal üçgeni denen aritmetik üçgene dayanır.

Pascal daha sonra sikloit üzerine incelemelere başladı ve Traité des sinus du quart du cercle (Çeyrek çemberin sinüsleri üzerine inceleme) adlı yapıtında Leibniz ‘in de yararlanacağı karakteristik üçgeni buldu. . . 1653′ten itibaren matematik ve fizik üzerine çalışarak sıvıların kararsızlığı üzerine bir kitapçık yazar. Bu kitapçıkta Pascal’ın basınç kanunu açıklanır. Kendisi binom üçgeni üzerinde çalışan ilk matematikçi olmasa da bu konuda çalışması değişik gelişmelere ışık tutmuştur. Aynı yıl babasının bir vergi toplama memuru olarak tayini çıkması üzerine Paris’i terk ederek Rouen şehrine yerleşirler. Burada babasına yardımcı olmak amacıyla ilk rakamsal hesap makinesini yapar, bunu gerçekleştirmek için üç yıl çalışır, 1642-1645.

Yirmi üç yaşlarında, kız kardeşinin baskı ve etkisiyle Hıristiyan dinine ve bunun içinde bazı tarikatlara girdi. 1646′da, babasının bir hastalığı sırasında ona bakan iki din adamının etkisiyle Jansenci mezhebe yakınlık duymaya başladı. Bu konuda epey sarsıntılar da geçirdi. Fakat yine onda matematik ağır bastı. Pascal, hurma ağaçları gibi tepeden kurumaya başladı. Aynı yıl hazım organları bozuldu. Bu ara geçici bir felç geçirdi. Bu ona çok ağrılar verdi. Her şeye rağmen, düşüncesi ve kafasının çalışmaları sürüyordu. 1648 yılında Toriçelli’nin (1608 -1647) çalışmalarını inceleyerek, onun da önüne geçti. Yükseklikle basıncın değiştiğini saptadı. Descartes, Pascal’la çeşitli konuları konuşmak ve özellikle barometre hakkında bilgi almak için geldi. Bu iki bilginin yaradılış ve ruhsal durumları pek uyuşmuyordu. Descartes, konikler üzerine yazılan eserin on altı yaşında bir çocuk tarafından yazıldığına inanmayı açıkça kabul etmedi. Daha da ileri giderek, Pascal’ın barometre deneyleri düşüncesini, Mersenne’nin çalışmalarından çalmış olmasından şüphelendi.

=İşte bu dönemde Janseniusçuluğu (kadere dayanan din öğretisi) keşfet­ti: bu öğretiye göre Tanrı, daha do­ğar doğmaz bazı yaratıklara inayetini bağışlıyor ve böylece, bu kişiler «kurtulacaklarından» emin olabiliyorlardı.

1647′de Paris’e yerleşen Pascal, çok hasta olmasına rağmen, hem bilimsel incelemelerini (boşluk üzerine denemeler), hem de toplum yaşantısını vargücüyle sürdürüyordu. Ama çok geçmeden, kızkardeşi Jacqueline’in etkisiyle, Port-Royal des Champs Manastırı’na çekilip orada bir yalnızlık hayatı sürmeğe başladı.

Janseniusçu dostlarını, Cizvitlere karşı sürdürdükleri kavgada savun­mak üzere, yazdığı Taşra Mektupları, papa tarafından yasaklanmıştı. 39 yaşında, en önemli eseri olan Hıristiyan Dininin Savunması’nı tamamlayamadan öldü. Hayatını ve eserini etkileyen dinî inanca sonuna kadar sadık kalmıştı. Bilimsel incelemeler: Koniler Üzerine Deneme, Boşluğun İncelemesi, Çevrime İlişkin Değirmi Mektup. Dinsel ve felsefî eserler: Aşkın ihtirasları Üzerine Konuşma, Anılar, Tanrı İnayeti Üzerine Yazılar, Hıristiyan Dininin Savunması (ölümünden sonra “Düşünceler” adıyla yayımlandı). =

Descartes’le Pascal’ın aralarında çekememezliğe neden olan üçüncü konu din üzerine olan düşüncelerindeki ayrılıklardı. Descartes Cizvitleri tutuyor, Pascal’sa Jansen’in mezhebini savunuyordu. Pascal’ın açık sözlü kız kardeşi Jacqueline’nin sözlerine bakılırsa, bu iki dahi birbirlerini oldukça kıskanıyorlardı. Bu nedenle de, adı geçen yukarıdaki görüşme ve ziyaret soğuk bir buluşma olmuştu. Descartes’in genç dostuna bazı öğütleri oldu. Pascal da onu ciddiye almadı. Babası 1651′de öldükten sonra bir süre için dinsel etkilerden kurtuldu, yeniden bilimsel araştırmalara yöneldi. Ama 23 Kasım 1654′te bir araba kazası geçirince kazadan kurtulmuş olmanın etkisiyle kendini tümüyle dine verdi ve bilimsel çalışmayı tümüyle bıraktı. Ne var ki 1658′de şiddetli bir diş ağrısı nedeniyle uykusuz geçen bir gecede, kerpetenin egemen olduğu bir zamanda, korkunç ağrılarını unutmak amacıyla, birçok ünlü matematikçinin uğraştığı zarif sikloid eğrisi (teker eğrisi) üzerinde düşünmeye başladı. Tam sekiz gün sikloid geometrisi üzerinde çalıştı ve bu sekiz gün içinde eğriye ilişkin önemli buluşlar yaptı. Tüm ağrılarının geçtiğini gördü. Ya da, sikloid üzerine o kadar daldı ki, tüm ağrı ve acılarını unuttu. Bu eğri ile ilgili olan çeşitli problemleri çözmeyi başardı. Bu buluşları bazıları takma Amos Detonville imzasıyla olmak üzere, Fransız ve İngiliz matematikçilerine meydan okumak amacıyla aynı yıl kitap halinde yayımlandı. 1658 yılında kendini oldukça hasta hissetti. Kısa aralıklarla gelen uyuklamalar dışında, şiddetli ve dinmek bilmeyen baş ağrıları ona çok eziyet ediyordu. Tam dört yıl bu ağrılarla kıvrandı. 1662 yılının haziran ayında otuz dokuz yaşındayken öldü.

Ölümünden sonra yapılan otopsisinde, ağrılarının nedeninin ciddi bir beyin hastalığından ileri geldiği saptandı. Pascal’ın felsefeyle ilgili en meşhur kitabı Pensées (Düşünceler), din, hayat ,bilim üzerine, O’nun daha çok dinsel yönünü ve Allah inancını ortaya kor, bunu da şöyle diyerek gösterir;If God does not exist, one will lose nothing by believing in him, while if he does exist, one will lose everything by not believing. (Eğer Allah yoksa insan ona inanmakla hiçbirşey kaybetmeyecek, fakat varsa inanmamakla çok şey kaybedecek. ) Bu kitabı yaşadığı devirde yayınlanmasına izin verilmese de ölümünden birkaç yıl sonra yayınlanmıştır. Pascal 39 yaşında 1662 yılında kansere yenik düşerek hayata gözlerini yumar Pascal, Fermat ile birlikte olasılıklar kuramını kurmakla, yeni bir matematik dünyası yaratmış oluyordu. Bu kuramın tüm inceliklerini ortaya döktü. Bu kuramı oluştururken, Fermat’la sürekli haberleşmişlerdir. Yapılan bu mektup görüşmeleri incelendiğinde, bu kuramın gerçek kurucularının Pascal ile Fermat’ın eşit payları olduğu görülür. Yaptıkları şeyler temelde aynı, fakat derinlemesine inilmeleri ayrı ayrıdır. Bu arada Pascal’ın düştüğü ufak hatayı Fermat belirtince, Pascal da bu hatasını hemen düzeltti. Bu haberleşmedeki ilk mektuplar kaybolmuşsa da, daha sonraki mektuplar hala eldedir. Bu büyük olasılıklar kuramının çıkış nedeni, Pascal’a kumarbaz Chevalier de Mere tarafından önerilmesiydi. En önemli görevi de elli iki kağıt oyunu oynuyordu. Bu ara tavla zarlarının, şekilleri aynı olan ayrı renkli bilyelerin önemi büyüktür. Buna bağlı olarak, ünlü Pascal üçgeni doğdu. Pascal’ın bu üçgeni, daha sonraki yıllarda çok kullanıldı. Özellikle seri açılımları ve binom açılımı bu yöntemle kolaylıkla bulunur. 1 11 121 1331 14641

Pascal üçgeni, binom açılımındaki katsayıları bulmaya yarar. Pascal’ın bu üçgeni, olasılıklar kuramında da ustalıkla kullanılır. Bu üçgen, biyolojideki uygulamalar, matematik, istatistik ve pek çok modern fizik konularında uygulama alanı bulunur. Hıristiyan dini, mezhepler ve sonu gelmez ağrılar içinde bir dahi maddi olarak yok olup gitmiştir. Fakat, bıraktıklarıyla yaşamaktadır. ±Pascal’dan İnciler: “Sebeplerin varacağı son nokta, onun ötesinde çok şey vardır. İnsanoğlunun mahiyeti arzu ve isteklerle doludur, o bütün bunları tatmin edebilecek olana müştaktır. ” “Yarış at için neyse, yalanlamak ,inanmak ve şüphe etmek insan için odur. Biz gerçekleri sadece sebeplerle değil, kalple de buluruz. ” Son yılların en gözde ve bilimsel bilgisayar yazılımlarından biri olan Pascal programlama dili‘ne de adı verilmiş olan Blaise PASCAL’ın bir başka ünlü sözü: “Kuvvete dayanmayan adalet aciz, adalete dayanmayan kuvvet zalimdir. “

 

Robert Boyle

Robert Boyle (1627 -1691) İrlandalı doğa filozofu, kimyager, fizikçi, kâşif ve kendi geliriyle deneylerini sürdürdüğü anlamına gelen bir “jentilmen bilimadamıydı”. En çok fizik ve kimya alanında yaptığı çalışmalarla hatırlanmaktadır. Araştırmalarının ve de kişisel düşüncelerinin açık bir şekilde simyacılıkla bağlantısı olsa da, genellikle, ilk modern kimyager olarak görülür. Çalışmalarının arasından en ünlüsü, The Sceptical Chymist (Kuşkucu Kimyager), kimya alanında bir dönüm noktası olarak görülür.

1645‘te İngiltere‘ye döndüğünde, babasının hastanede olduğunu ve ona Dorset‘teki Stalbridge eviyle İrlanda’daki mülklerini bıraktığını öğrendi. O zamandan sonra, kendini bilimsel araştırmaya adadı ve kısa zamanda, kendine, birkaç meraklı insanın yeni bir felsefe oluşturmak için kurduğu “Görünmez Kolej’de” bir yer buldu. Bu grup, sıkça Londra‘daki Grensham Koleji’nde buluşuyorlardı. bazı üyeler Oxford‘da da buluşmalarını yapıyorlardı. Bunun ardından, 1654‘te, Boyle, Oxford’a taşındı. 1657‘de Otto von Guericke‘nin hava pompasını okuyunca, Robert Hooke‘un asistanlığıya bu aleti geliştirmeye karar verdi. 1659‘da “machina Boyleana” ya da “Pnömatik Motor” adının verdiği sonuçlardan sonra hava konusunda birçok deney yapmaya başladı.

1660‘ta, bu aletle yaptığı çalışmaları New Experiments Physico-Mechanical (Fiziko-Mekanik Yeni Deneyler) adı altında yayınladı. Bu kitaptaki düşüncelerin bir eleştirmeni Franciscus Linus’tu (1595-1675). Boyle, ünlü Boyle yasasını bu kritiklere yanıt ararken buldu. Ancak, bağımsız bir şekilde, aynı şeyleri bulan ama 1676‘ya kadar yayımlamayan Edme Mariotte de bu kanunun bulucuları arasında gösterilir. 1663‘te, Görünmez Kolej, Doğal Bilgide Gelişme İçin Londra Kraliyet Cemiyeti (Royal Society of London for the Improvement of Natural Knowledge) oldu. Vakfın kurucusu II. Charles, Boyle’ı bir üye yaptı ve 1680‘de başkanlığa seçilse de yeminleri konusunda bazı şüpheleri olduğu için bu görevi kabul etmedi.

Boyle, Oxford’dayken bir Chevalier (Şövalye) oldu. Şövalyelerin Oxford’a, Boyle’ın gelmesinden biraz zaman önce yerleştikleri düşünülmektedir. Boyle’ın yaşadığı zaman, zaferler almış parlement güçlerinin, yeni gelişen fikirlere karşı olduğu bir zamana denk geldiği için Boyle’ın da Şövalye hareketlerinde nasıl görevler aldığı oldukça gizli kalmıştır. Bu nedenle de bu konuda tek bilinen şey, böyle bir cemiyete üyeliğidir.

1668‘de Oxford’u bırakıp Londra‘ya, Pall Mall’da oturan kız kardeşi Lady Ranelagh’ın yanına yerleşmiştir.

1689‘da hiçbir zaman çok kuvvetli olmayan sağlığı oldukça kötüleşti ve de bu onun Kraliyet Cemiyeti de dahil görüşmelere gitmesini engelledi. Tanıdıklarıyla, “çok sıradışı bir durum olmadığı müddetçe” Salı-Cuma öğledensonraları ve Çarşamba-Cumartesi de öğlenleri rahatsız edilmek istemediği haberini saldı. Bu kazandığı zamanda “kendini toparlayıp, raporlarını düzenlemeyi” ve “o sanattaki çalışkan havarilere, aynen Hermetik bir miras” gibi olacak önemli kimyasal çalışmalar düzenlemek istiyordu. Ancak bu cümlelerinde tam olarak ne yapmak istediğini açıklamadı. 1691‘de sağlığı daha da kötüye gitti ve kız kardeşinin ölümünden tam bir hafta sonra, 30 Aralık’ta öldü. Arkadaşı olan rahip Burnet tarafından yapılan cenaze töreninin ardından St. Martin’s in the Fields kilise mezarlığına gömüldü. Boyle, Boyle Lectures (Boyle Dersleri) olarak adlandırılan bir dizi dersi, vasihatnamesiyle bağışlamıştır.

Boyle’ın bilim araştırmacısı kimliğiyle başarısı, Sir Francis Bacon‘ın Novum Organum (Yeni Organ) adıyla bastığı vaazındaki ilkelere dayanır. Ancak kendisini ne Bacon’ın ne de başka bir öğretmenin takipçisi olarak görmemiştir. Birçok kez, modern felsefe teorilerinde de yapabileceği gibi, yorumlarını şatafatlı abartılardan uzak tutmak için, bir yargıya varırken “yeterli delil sunuluncaya kadar”, Atomikal ve Cartesian sistemlerle deneysel anlamda ilgilenmediğini belirtmiştir. “Ancak kısa bir süre için ilgilendiğini” kabul ettiği Novum Organum için bile geçerliydi bu durum. Boyle’ın doğasına en aykırı olan şeylerden bir tanesi de hipotezlerin ortaya atılmasıydı. O, bilginin geliştirilmesini bir son olarak görüyordu ve bu yüzden de ondan önce gelenlerden, bilim sorgulamasının amaçları konusunda daha geniş bir bakışaçısı olmuştur. Ancak bu, bilmin pratik uygulamalarına ve de kullanılan bilgiye karşı olduğu anlamınca gelmiyordu.

Kendisi de bir simyacı olduğundan, metallerin değişebileceğine inanıyordu ve bu doğrultuda deneyler yaptı. 1689‘da IV. Henry’nin heykelinin yıkıntısını altın ve gümüşe çevirmeye çalışması da buna örnek olarak gösterilebilir. Fizikte başardığı birçok şeye rağmen – Boyle yasasının bulunuşu, gazların sesin dağılımı üzerindeki etkilerinin araştırılması ve donan suyun kaplayıcı kuvvetinin değişik yerçekimleri, değişik güçlerde, kristaller, elektrik, renk ve hidrostatikler üzerindeki etkilerinin incelenmesi – kimya, onun favori alanıydı. 1661‘de, yazdığı The Sceptical Chemist (Kuşkucu Kimyager) ile “Tuz, Sülfür ve Civalarını herşeyin gerçek ilkesi olarak göstermeye hevesli bazı simyacıların yaptığı deneyleri” eleştirmiştir. Ona göre, kimya, maddelerin birleşme bilmiydi; fizik ya da simyacıların sanatlarına bir ek değil. Elementleri, maddi yapıların bölünemez parçaları olarak görerek modern görüşe yaklaştı. Bunu, karışımla bileşiklerin ayrımını yapabilmesiyle ve “analiz” adını verdiği bir yöntemle, bir maddenin içindekileri bulabilmesiyle kanıtlamıştır. Ayrıca, daha sonraları, elementlerin değişik çeşit ve boyuttaki parçalardan oluştuklarını ancak bilinen yöntemlerle ortaya çıkarılamayacaklarını öne sürmüştür. Uygulamalı kimya, geliştirilmiş methodları ve her bir madde hakkında verdiği bilgileri için Boyle’a çok şey borçludur. ayrıca gazların yanması ve moleküler solumanın kimyasıyla da ilgilenmiştir. Daha sonraları fizyoloji deneyleri yapsa da, kendi değimiyle “doğasının yumuşaklığı” nedeniyle, özellikle de yaşayan hayvanları anatomik olarak incelemek için kesemediğini belirtmiştir. Ancak yine de onları son derece “öğretici” bulmuştur.

Oldukça meşgul bir doğa filozofu olmanın yanında, Boyle ayrıca teolojiye, onun pratik yanlarına ve de tartışmalı polemiklere olduça zaman ayırmıştır. İngilizlerin Restoration (Restorasyon) döneminde, bulunduğu yerde oldukça iyi karşılanmış ve 1665‘te Eton’da önemli bir görev alabilecek konuma gelmişse de bir aceminin sözlerinin bir pederin sözlerinden daha ağır gelebileceğini düşünüp, bunu kabul etmemiştir. East India Company’nin (Doğu Hindistan Şirketi) yöneticisi olarak, Doğu’da Hristiyanlık‘ın yayılması için yüklü paralar harcamıştır. Buna ek olarak misyoner çevrelerine girmiş, İncil‘i değişik dillere çevirmek için çabalarda bulunmuştur. Boyle Dersleri’nde, Hristiyanlık’ı, kendi içindeki çelişkilerden bahsetmeden, “başta ateistler, teistler, paganlar, Museviler ve Müslümanlar olmak üzere bütün inanmayanlara karşı” savunmayı amaçlamıştır.

Boyle ince ve uzun boylu, yakından bakılınca oldukça soluk tenliydi. Görüntüsü sağlıklı bir kişiden çok farklıydı ve hayatı boyunca da görüntüsünden de belli olan bu zayıf halinden çekti. Yaptığı bilimsel çalışmalar, Boyle’ı çevresinde oldukça iyi bir yere koysa da, özel kişiliği ve artıları – sosyal hayattaki cazibesi, zekası ve konuşma yeteneği – onu, daha da büyük bir çevreye tanıttı. Hiçbir zaman evlenmedi. Yazıları oldukça uzun, ancak yine de fazlasıyla açık ve anlaşılabilirdir.

2004‘te, öğrencilerin bilimsel araştırmalar yapıp eğitim görebildiği, “The Robert Boyle Science Room” (Robert Boyle Bilim Odası), Lismore Heritage Centre’da açıldı. Burası, doğum yerine oldukça yakın bir yerdir.

Modern kimyanın kurucuları olarak genellikle Priestley, Lavoisier ve Dalton bilinir; ama onları önceleyen ilk büyük adımı Boyle’un attığı gözden kaçmamalıdır. Boyle’un içine doğduğu dünya büyücülüğün, falcılığın, batıl inançların kol gezdiği bir dünyaydı. Bıraktığı dünya, olgusal deneye, ussal ve eleştirel düşünmeye, doğal güçleri anlama ve denetlemeye yönelen bir dünya olmuştu. Öldüğünde çağdaşları onu, “Gerçeği soluyan Robert Boyle” diye anmışlardı.

Boyle, pek çok maddenin, kendi içinde değişmeyen birtakım basit elementlerin bileşiği olduğu düşüncesini işleyerek yüzyılların öğretisi simyayı geçersiz kılar. Simyacılar, özellikle Ortaçağ boyunca, “iksir” denen gizemli bir sıvıyla yaşamı ölümsüzleştirme, bayağı madenleri altına dönüştürme yolunda yoğun uğraş içindeydiler. Onlara göre, bir madde nitelik bakımından istenen başka bir maddeye çevrilebilirdi.

Boyle’un yaşadığı dönemde elementlerin sayısı bilinmiyordu, kuşkusuz. Ama Boyle ilk kez, en az iki elementi içinde taşımayan her maddenin bir element sayılabileceği savını ileri sürmekteydi; öyle ki kimyacı, inceleme konusu her maddenin kimliğini, elementlere çözümleme yöntemiyle belirleyebilirdi.

Onun buna koşut bir savı da, element ya da bileşik olsun her saf maddenin kimliğini koruduğuydu: Herhangi bir örneklemin değişik görünmesi temsil ettiği maddenin değiştiğini değil, olsa olsa yabancı bir madde ile katıştığını gösterirdi.

Boyle’un, kimyasal çözümleme yöntemini sağlam bir temele oturttuğu söylenebilir; ama onun ilgi alanı kimya ile sınırlı değildi. Elektrik konusundaki çalışmaları da, bir başlangıç olarak, umut verici bir düzeyde idi. Pozitif ve negatif elektrik yükü ayırımını ona borçluyuz. Ayrıca, sesin tersine ışık gibi elektrik çekiminin de bir boşluktan geçebileceğini ilk gösteren odur.

Deneysel çalışmalarıyla kısa zamanda tanınan Boyle’un bilimdeki en büyük atılımı hava basıncı üzerindeki çalışması ve bu basınca ilişkin “Boyle Yasası” diye bilinen ilişkiyi bulmasıdır. Daha sonra matematiksel olarak dile getirilen bu ilişki, gazların basınç altında nasıl davrandığını açığa vurmaktadır.

İrlanda kökenli Robert Boyle bilimsel yaşamını öğrenim gördüğü İngiltere’de sürdürür. Zengin ve kültür düzeyi yüksek bir ailenin tüm olanaklarıyla büyüyen Robert daha küçük yaşında Latince, Yunanca ve Fransızca öğrenmişti. Onbir yaşına geldiğinde Avrupa’nın başlıca bilim ve kültür merkezlerini gezme ve tanıma olanağı bulur.

Ondört yaşında İtalya’ya gider. Canlı ve renkli yaşamıyla bir çok yönden göz kamaştıran bu Akdeniz ülkesinde gezip tozup eğleneceğine, Galileo’nun çalışmalarını incelemeye koyulur. Sonunda öylesine büyülenir ki, İngiltere’ye döndüğünde yaşam planı çizilmiş, hedefi belirlenmiştir, artık! Delikanlı için bundan böyle yaşam bilime verildiği ölçüde anlamlıdır.

İlk işi, Oxford Üniversitesi’nde kimi seçkin öğrencileri çevresinde toplayarak “Görünmez Kolej” dediği bir dernek oluşturmak olur. Derneğin amacı, deneysel bilim etkinliklerini teşvik etmek, bilimsel yönteme tartışarak açıklık getirmekti. Görünmez Kolej çok geçmeden saygınlık kazanır, 1660′da kralın onayı ile belli sayıda seçkin bilim adamına üyelik olanağı tanıyan “Royal Society” adı altında kurumsallaşır.

Boyle’un yetiştiği dönemde tartışılan konuların başında hava basıncı geliyordu. Onyedinci yüzyıl başlarında kullanılmaya başlanan su çekme pompası bir sorun ortaya koymuştu: Suyun kuyudan yaklaşık 10 m’den daha yukarı çekilmesi neden olanaksızdı? Galileo bile bu soruya doğru bir yanıt verememişti. Soruna aranan açıklamayı Galileo’nun öğrencisi Torricelli getirir.

Torricelli analojiden yararlanarak havanın da su gibi içindeki nesneler üzerinde basınç etkisi olabileceği düşüncesinden yola çıkar. “Hava Denizi” denen bu hipotezin 10 m’lik su sütunuyla yoklanması pratik olarak kolay değildi. Torricelli deneysel yoklamasını içi cıva dolu l m’lik bir tüple gerçekleştirir.

Deney basittir: Tüp, açık ucu parmakla kapatılarak ters çevrilip, üstü açık, cıva dolu bir çanağa daldırılınca cıva sütununun tüpün kapalı üst ucunda bir boşluk bırakarak 76. 2 cm düzeyine düştüğü görülür (Bilindiği gibi cıva sudan ondört kat daha ağırdır). Torricelli cıvanın bu düzeyde kalmasını, çanak üzerindeki hava basıncı ile açıklar. Bu açıklama daha sonra Fransa’da Blaise Pascal, Almanya’da Otto von Guericke tarafından değişik deneylerle doğrulanır.

Bu deneyleri duyan Boyle de “Hava Denizi” hipotezini deneysel olarak yoklamaya koyulur. O cıva tüpünü üstü açık cıva dolu çanağa değil, havası boşaltılmış kapalı bir kaptaki cıvaya daldırır. Hava basıncı desteğinden yoksun cıva sütunu tümüyle çöker; ancak kaba yeniden hava verildiğinde cıva sütununun yükselerek 76. 2 cm’lik düzeyi bulduğu görülür.

Royal Society’nin kurucusu Boyle kendi adıyla anılan bilim yasasıyla da ünlüdür. Bu yasa yukarıda da belirttiğimiz gibi bir gazın oylumu ile üzerindeki basıncın ilişkisini dile getirmektedir. Şöyle ki, sıcaklık sabit tutulduğunda, bir gazın oylumu üzerindeki basınçla ters orantılıdır (Matematiksel olarak: V= sabit bir sayı X 1/P, ya da, PV= sabit bir sayı. V oylumu, P basıncı simgelemektedir).

Buna göre, örneğin, bir gazın üzerindeki basınç iki katına çıkarıldığında oylumu yarıya inmekte, tersine, basınç yarıya indirildiğinde oylumu iki katına çıkmaktadır. Gazların pek çoğu bu ilişkiyi tam, küçük bir bölümü ise yaklaşık olarak yansıtmaktadır.

Gazların fiziksel teorisinin gelişmesinde önemli bir adım olan Boyle Yasası, gazların kimyasal yapısını anlamaya da yol açmıştır. Özellikle, molekül ve atomların saptanmasında, bunların oluşturduğu bileşiklerin incelenmesinde yasanın oynadığı rolün önemi yadsınamaz.

Boyle’un çalışması izlenerek, sıcaklık değişikliğinin basınç ve oylum üzerindeki etkisi de incelenmiştir. Onsekizinci yüzyıl sonlarına doğru, biribirinden bağımsız olarak iki Fransız bilim adamı (Jacques Charles ile Gay-Lussac), ısıtılan bir gazda basıncın sabit tutulması isteniyorsa, sıcaklığın artışı ile orantılı olarak oylumun artışına olanak verilmesi gerektiğini belirler.

“Charles Yasası” diye bilinen bu ilişki, “Sabit basınç altında bir gazın oylumu, mutlak sıcaklığıyla doğru orantılıdır” diye dile getirilebilir: V = sabit bir sayı X T. (T sıcaklığı, V oylumu simgelemektedir. ) Boyle gibi Charles da yasasını deneysel olarak ortaya koymuştu. İki yasanın da matematiksel olarak temellendirilmesi ondokuzuncu yüzyılda oluşturulan gazların kinetik teorisini bekler.

Francis Bacon’u izleyen Boyle da, uygarlığın geleceği bakımından bilime büyük umutla bağlanmıştı. Yaşadığı dönemi bilime yönlendirme yolundaki çabasının anlamını yansıtan şu sözleri ilginçtir:

İnsanlığın gönenç ve mutluluğu, doğa bilginlerinin düşün yaşamımıza getirdiği yeni anlayışla koşut gidecektir.

İçine doğduğu dünya büyücülüğün, falcılığın, batıl inançların kol gezdiği bir dünyaydı. Bıraktığı dünya, olgusal deneye, ussal ve eleştirel düşünmeye, doğal güçleri anlama ve denetlemeye yönelen bir dünya olmuştu. Öldüğünde çağdaşları onu, “Gerçeği Soluyan Robert Boyle” diye anmışlardı.

 

ChrIstIaan Huygens

(1629 – 1695) Yüzyılımızın seçkin bir düşünürü (A. N. Whitehead), 17. yüzyılı “dâhiler yüzyılı” diye nitelemişti. Kepler, Galileo, Newton gibi hepimizin bildiği bu dâhilerden biri de Christiaan Huygens’ti Huygens biri pratik, diğeri teorik olmak üzere başlıca iki çalışmasıyla bilimin öncüleri arasında yer almayı başarmıştır.

Hollanda’da dünyaya gelen Christiaan, daha küçük yaşında, matematik ve bilime belirgin bir ilgi duymaktaydı. Aydın kesimde etkili kişiliğiyle tanınan babası, devlet adamlığının yanı sıra müzik ve şiirle de uğraşmaktaydı. Entellektüel bir ortamda yetişen Christiaan, üniversite öğrenimini tamamladıktan kısa bir süre sonra astronomi ve matematik konularında yayımladığı tezlerle bilim çevrelerinin, bu arada dönemin ünlü matematikçi-fîlozofu Rene Descartes’ın özel dikkatini çeker.

Huygens bilimsel çalışmalarına astronomide başlar. Teleskop daha yeni kullanılmaya başlanmıştı. Genç bilim adamı, geçimini gözlük camı yapmakla sağlayan filozof Spinoza ile işbirliğine girerek daha güçlü bir teleskop elde eder.

Gözlemleri arasında Satürn gezegeninin çevresindeki “hale” de vardı. Onun geniş, düz bir halkaya benzettiği bu hale aslında iri toz parçalarının oluşturduğu üç kuşak içermektedir. Optik araçlar üzerindeki çalışmasının izlerini günümüzde kullanılan araçların taşıdığı söylenebilir. Ama onu gününde, asıl üne kavuşturan şey, sarkaçlı saati icat etmesiydi. Gerçi Galileo daha önce zamanı belirlemede sarkaçtan yararlanılabileceğini ileri sürmüştü. Ancak yoğun çabalara karşın istenilen sonuca ulaşılamamıştı.

Huygens’in 1657′de yaptığı saat oldukça dakikti. Bu icat öncelikle denizcilikteki gereksinim göz önüne alınarak ortaya konmuştu. Ne var ki, beklenen sonuç tam gerçekleşmez. Yerçekiminin sarkaç üzerindeki etkisi gözden kaçmıştı. Bilindiği gibi belli bir yerde sarkacın her salınım süresi aynıdır. Ancak saat arzın merkezinden uzaklaştıkça (örneğin, yüksek bir dağ tepesine çıkarıldığında, ya da, ekvatora yaklaştırıldığında) salınım giderek yavaşlar, saat geri kalır.

Bunu daha sonra fark eden Huygens, yitirilen zaman miktarından arzın ekvatordaki şişkinliğinin hesaplanabileceğini bile gösterir.

Bu arada Huygens’in adı sınır ötesi bilim çevrelerinde de duyulmaya başlamıştır. 1663′te Royal Society (İngiliz Kraliyet Bilim Akademisi) onu, üyelik vererek onurlandırır. Huygens törene katılmak için Londra’ya gittiğinde Newton’la tanışır.

Newton çalışmalarını takdir ettiği bu yabancı bilim adamını ülkesinde tutmak için girişimlerde bulunur. Ama Huygens’e daha parlak bir öneri XIV. Louis’den gelir. Fransa’nın bilimde üstün bir konuma gelmesini sağlamaya çalışan Kral, Huygens’i bilimsel çalışmalara katılmak üzere Paris’e çağırır. Huygens, üstlendiği görevde, Fransa ile Hollanda arasında bu sırada çıkan savaşa karşın, aralıksız onbeş yıl kalır.

Üzerinde yoğun uğraş verdiği başlıca konu ışığın yapı ve devinim biçimiydi. Işığın ne olduğu gizemli bir sorun olarak tarih boyunca ilgi çekmiştir. Antik Yunan bilginleri nesnelerin görünebilirliğini gözün yarattığı bir olay sayıyordu. Örneğin, Epicurus görüntünün gözden kaynaklanan resimlerden oluştuğunu ileri sürmüş, Platon ise gözün ve bakılan nesnenin saçtığı ışınların birleşimi olduğunu vurgulamıştı. Daha garip bir açıklamaya göre de, baktığımız nesneyi gözden fırlayan birtakım görünmez incelikte dokunaçlarla görmekteydik.

17. yüzyıla gelinceye dek ışık konusunda önemli bir gelişmeye tanık olmamaktayız; üstelik ışık deviniminin anlık bir olay olduğu görüşü yaygındı. Aslında doğal olan da buydu; çünkü, ışığın belli bir hızla devindiği sağduyuya pek yatkın bir düşünce değildi. Gözümüzü açar açmaz görmüyor muyduk?

Işığın belli bir hızla ilerlediği düşüncesini ilk kez Danimarkalı astronom Römer ortaya koyar. 1675′te Jüpiter gezegeninin birinci uydusunu gözlemlemekte olan Römer, uydunun çevresinde döndüğü gezegenin arkasında geçirdiği süreyi saptamak istiyordu. Değişik zamanlarda yaptığı ölçmelerin farklı sonuçlar vermesi şaşırtıcıydı. Römer bu tutarsızlığı açıklamalıydı.

Römer, Dünya ile Jüpiter’in güneş çevresindeki dolanımlarında kimi kez birbirlerine yaklaştıklarını, kimi kez uzaklaştıklarını biliyordu. Şaşırtıcı bulduğu olayın, iki gezegenin arasındaki mesafe ile bağıntılı olduğunu görür. Aradaki mesafe kısaldıkça uydunun gezegen arkasında geçirdiği sürenin azaldığını, mesafe uzadıkça sürenin arttığını saptayan Römer, bunu, ışığın belli bir hızla ilerlediği hipoteziyle açıklar. Işığın aldığı mesafe kısaldığında uydunun erken doğuşu kaçınılmazdı. Işığın belli bir hızla devindiği düşüncesi ister istemez başka bir soruya yol açmıştı: Işık nasıl devinmektedir? Huygens bu soruyu dalga kuramıyla, Newton parçacık kuramıyla yanıtlar.

Huygens ışığın dalga kuramını Fransızca kaleme aldığı Traite de la Lumiere (Işık Üzerine inceleme) adlı yapıtında ortaya koyar. Onun bu kurama yönelmesinde bir etken ışıkla ses arasında gördüğü benzerlikti. Bir başka etken de bir delikten çıkan ışığın yalnız tam karşısında ulaştığı noktadan değil çevredeki hemen her noktadan görülmesi olayıydı. Bu olay ışığın devinimini anlamak bakımından önemliydi.

Huygens’in “esir” kavramı bu işlevi sağlayacaktı. Bir benzetme olarak, demiryolunda biribirine dokunan ama bağlı olmayan bir dizi vagon düşünelim. Şimdi dizinin başındaki vagona lokomotifin hafif bir vuruş yapması nasıl bir sonuç doğurur? Darbeyi dizi boyu ileten vagonların yerlerinde kaldığı, yalnızca son vagonun uzaklaştığı görülür.

Nedenini, devinimin “etki – tepki” yasasında dile gelen ilişkide bulabiliriz: Vuruş etkisini bir sonraki vagona ileten her vagon aldığı tepkiyle dizideki yerinde kalır. Bir tepki almayan son vagon ise, aldığı vuruş etkisiyle diziden uzaklaşır. Verdiğimiz bu örnek dalga kuramına önemli bir açıdan ışık tutmaktadır. Huygens, uzayın, “esir” dediği görünmez bir nesneyle dolu olduğunu varsaymaktaydı. Buna göre, ışık bir yerden başka bir yere ilerlerken tıpkı vagonların ilettiği vuruş etkisiyle devinir, şu farkla ki, ilerleme tek bir yönde değil, esir ortamında tüm yönlerde oluşur. Nasıl ki, demiryolunda ilerleyen şey vagonlar değilse, uzayda da ilerleyen tanecik türünden nesneler değil, devinim dalgasıdır.

Huygens dalga kuramıyla ışığın yansıma, kırılma, kutuplaşma gibi davranışlarını da açıkladığı inancındaydı. Ne var ki, dalga kuramı, Newton’un parçacık kuramının gölgesinde, 19. yüzyıla gelinceye dek gözden uzak kalır.

Newton 1672′de Royal Society’ye sunduğu bildirisinde beyaz bir ışık ışınının cam prizmadan geçtiğinde gökkuşağındaki gibi bir renk spektrumu sergilediğini belirterek, bunun ışığın taneciklerden oluştuğu hipoteziyle açıklanabileceğini vurgulamıştı. Rakibi Robert Hooke’un eleştirisi karşısında daha esnek bir tutum içine giren Newton her ne kadar parçacık ve dalga kuramlarının ikisine de yer veren “karma” bir kuramdan söz ederse de sonuç değişmez; bilim çevreleri Newton’un büyüleyici etkisinde parçacık kuramına üstünlük tanır.

19. yüzyılın başlarında durumda beklenmedik bir gelişme olur; dalga kuramı yeniden ön plana çıkar. Işık üzerinde yeni deneylere girişen Thomas Young (1773-1829) elde ettiği verilerin ışığın dalga kuramıyla ancak açıklanabileceğini görür. Kaynağı ve sıcaklığı ne olursa olsun ışık hızının değişmemesi, seçilecek kuramın geçerlik ölçütü olmalıydı.

Young’a göre, dalgaların hızının aynı kalmasını bekleyebilirdik; ama tanecikler için aynı şey söylenemezdi. Gene, yansıma ve kırılmanın aynı zamanda olması, dalga açısından bakılınca doğaldı; oysa, taneciklerin bir bölümü yansırken, bir bölümünün kırılması açıklamasız kalan bir olaydı.

Öte yandan, Newton, ışığın dalga niteliğinde olması halinde doğrusal bir çizgide ilerlemesine, keskin gölge oluşturmasına olanak bulmamıştı. Young’ın buna yanıtı basitti: Dalga uzunlukları yeterince kısa ise, ışığın hem doğrusal devinimi, hem de keskin gölge oluşumu beklenebilirdi. Ayrıca, Young’ın “karışım” (interference), onu izleyen Fresnel’in “kırınım” (diffraction) denen olgulara getirdikleri açıklamalar dalga kuramını destekleyici nitelikteydi.

Daha sonra Maxwell’in dalga kuramını daha kullanışlı bulması da dengenin büsbütün parçacık kuramı aleyhine dönmesine yol açar. Ne var ki, yüzyılımızın başında durum bir kez daha değişir. Planck’ın kuvantum, Einstein’ın foto-elektrik kavramlarıyla ışığın parçacık kuramı yeniden ön plana çıkar.

Bugün ulaşılan düzeyde kuramlardan ne birinin ne ötekinin kesin egemenliğinden söz edilebilir. Bir bakıma Newton’un sözünü ettiği, şimdi kimi bilim adamlarının “wavicle” diye dile getirdikleri “dalga-tanecik” karması ya da ikilemiyle karşı karşıyayız. Geçici de olsa bu “barışıklık” aşamasında egemenlik paylaşılmış görünüyor. Huygens dalga kuramının öncüsü olarak bilim gündeminde yerini korumaktadır.

 

SIr Isaac Newton

Isaac Newton, (1642 -1727). İngiliz fizikçi, matematikçi, astronom, mucit, filozof ve simyacıdır. Tarihteki en büyük matematikçi ve bilim adamlarından biri olduğu düşünülür. Bilim devrimine ve heliyosentirizm‘in gelişmesinde büyük katkıları olmuştur.

Isaac Newton 25 Aralık 1642‘te İngiltere‘nin Lincolnshire kentinde doğdu. Çiftçi olan babasını doğumundan üç ay önce kaybetmişti. Annesi ikinci kez evlendi. İkinci evlilikten üç üvey kardeşi olan Isaac anneannesinde kalıyordu. On iki yaşında Grantham‘da King’s School’a yazılan Newton, bu okulu 1661‘de bitirdi. Aynı yıl Cambridge Üniversitesi‘ndeki Trinity Kolej’e girdi. Nisan 1665‘te bu okuldan lisans derecesini aldı. Lisansüstü çalışmalarına başlayacağı sırada ortalığı saran veba salgını yüzünden üniversite kapatıldı.

Salgından korunma amacıyla annesinin çiftliğine sığınan Newton, burada geçirdiği iki yıl boyunca en önemli buluşlarını gerçekleştirdi. 1667‘de Trinity Kolej’e öğretim üyesi olarak döndüğünde diferansiyel ve integral hesabın temellerini atmış, beyaz ışığın renkli bileşenlerine ayrıştırılabileceğini saptamış ve cisimlerin birbirlerini, uzaklıklarının karesi ile ters orantılı olarak çektikleri sonucuna ulaşmıştı. Çekingenliği yüzünden Newton her biri bilimde devrim yaratacak nitelikteki bu buluşların çoğunu uzun yıllar sonra (örneğin diferansiyel ve integral hesabı 38 yıl sonra yayınlamıştır. )

Lisansüstü çalışmasını ertesi yıl tamamlayan Newton 1669‘da henüz 27 yaşındayken Cambridge Üniversitesi’nde matematik profesörlüğüne getirildi. 1671‘de ilk aynalı teleskopu gerçekleştirdi, ve ertesi yıl Royal Society üyeliğine seçildi. Royal Society’e sunduğu renk olgusuna ilişkin bildirisinin eleştirilere hedef olması, özellikle Robert Hooke tarafından şiddetle eleştirilmesi üzerine Newton tümüyle içine kapanarak, bilim dünyasıyla ilişkisini kesti.

1675‘de optik konusundaki iki bildirisi yeni tartışmalara yol açtı. Hooke makalelerdeki bazı sonuçların kendi buluşu olduğunu, Newton’un bunlara sahip çıktığını öne sürdü. Bütün bu tartışma ve eleştiriler sonucunda 1678‘de ruhsal bunalıma giren Newton ancak yakın dostu ünlü astronom ve matematikçi Edmond Halley‘in çabalarıyla altı yıl sonra bilimsel çalışmalarına geri döndü.

Newton’un başına elma düşmesiyle yerçekimini keşfettiği yer, Cambridge’deki Botanik bahçesi’nde bulunuyor.

Isaac Newton’un kendisine ait ilk basım Principia, Üstünde kendi el yazısı ile ikinci basımda yapılacak değişiklikler yer alıyor.

Cambridge Üniversitesi’nde Katolikliği yaygınlaştırma ve egemen kılma çabalarına karşı başlatılan direniş hareketine öncülük eden Newton, kral düşürüldükten sonra 1689‘da üniversitenin parlamentodaki temsilciliğine seçildi. 1693‘de yeniden bir ruhsal bunalıma girdi ve yakın dostlarıyla, bu arada Samuel Pepys ve John Locke ile arası bozuldu. İki yıl süren bir dinlenme döneminden sonra sağlığına yeniden kavuştuysa da bundan sonraki yaşamında bilimsel çalışmaya eskisi gibi ilgi duymadı. Daha sonra 1699‘da Fransız Bilimler Akademisi‘nin yabancı üyeliğine 1703‘de Royal Society’nin başkanlığına seçildi. . . !!!***

 Bilimin öncülerini tarih sürecinde bir dizi yıldız olarak düşünürsek, dizide konum ve parlaklığıyla hepsini bastıran iki yıldız vardır: Newton ve Einstein. Yaklaşık iki yüz yıl arayla ikisi de fiziğin en temel sorunlarını ele aldılar; ikisinin de getirdiği çözümlerin madde ve enerji dünyasına bakışımızı kökten değiştirdiği söylenebilir.

Newton Galileo ile Kepler’in; Einstein, Newton ile Maxwell’in omuzlarında yükselmiştir. Newton çok yanlı bir araştırmacıydı: matematik, mekanik, gravitasyon ve optik alanlarının her birindeki başarısı tek başına bir bilim adamını ölümsüz yapmaya yeterdi. Yüzyılımıza gelinceye dek her alanda bilime model oluşturan fiziksel dünyanın mekanik açıklamasını büyük ölçüde ona borçluyuz.

Isaac Newton İngiltere’de sıradan bir çiftçi ailesinin çocuğu olarak dünyaya geldi. Babası doğumundan önce ölmüştü. Prematür doğan, cılız ve sağlıksız bebek yaşama umudu vermiyordu, ama tüm olumsuzluklara karşın büyümekten geri kalmadı. Çocuk daha küçük yaşlarında ağaçtan mekanik modeller yapmaya koyulmuştu; eline geçirdiği testere, çekiç ve benzer araçlarla ağaçtan yel değirmeni, su saati, güneş saati gibi oyuncaklar yapıyordu. El becerisi dikkat çeken bir incelik sergiliyordu.

Newton’un üstün öğrenme yeteneği amcasının gözünden kaçmaz. Bir din adamı olan amca aydın bir kişiydi; çocuğun çiftçiliğe değil, okumaya yatkın olduğunu fark etmişti. Amcasının sağladığı destekle Newton yörenin seçkin okulu Grantham’a verilir. Ne ki, çocuğun bu okulda göz alıcı bir başarı ortaya koyduğu söylenemez.

Bedensel olarak zayıf ve çelimsiz olan Newton, her fırsatta, zorbalık heveslisi kimi okul arkadaşlarınca hırpalanarak horlanır. Newton’un ilerde belirginlik kazanan çekingen, geçimsiz ve kuşkulu kişiliğinin, geçirdiği bu acı deneyimin izlerini yansıttığı söylenebilir. Belki de bu yüzden Newton, bilimsel ilişkilerinde bile yaşam boyu kimi tatsız sürtüşmelere düşmekten kurtulamaz.

Okulu bitirdiğinde, ülkenin en seçkin üniversitesine gitmeye hazırdır. Yine amcasının yardımıyla, 1661′de Cambridge Üniversitesi’nde öğrenime başlar. Matematik ve optik ilgilendiği başlıca iki konudur. Üniversiteyi bitirdiği yıl (1665), ülkeyi silip süpüren bir salgın hastalık nedeniyle bütün okullar kapanır; Newton baba çiftliğine döner.

Doğanın dinlendirici kucağında geçen iki yıl, yaşamının en verimli iki yılı olur: gravitasyon (yerçekimi) kuramı, kalkülüs ve ışığın bireşimine ilişkin temel buluşlarına burada ulaşır. Einstein, “Bilim adamı umduğu başarıya otuz yaşından önce ulaşamamışsa, daha sonra bir şey beklemesin!” demişti. Newton yirmibeş yaşına geldiğinde en büyük kuramlarını oluşturmuştu bile.

Newton Cambridge Üniversitesi’ne döndüğünde okutman olarak görevlendirilir; ama çok geçmeden üniversitenin en saygın matematik kürsüsüne, hocası Isaac Barrow’un tavsiyesiyle, profesör olarak atanır. Matematik çalışmalarının yanı sıra optik üzerindeki denemelerini de sürdüren Newton’un kısa sürede bilimsel prestiji yükselir, 1672′de Kraliyet Bilim Akademisine üye seçilir. Kendisine sorulduğunda başarısını iki nedene bağlıyordu:

(1)devlerin omuzlarından daha uzaklara bakabilmesi,

(2)çözüm arayışında yoğun ve sürekli düşünebilme gücü.

Gerçekten işe koyulduğunda çoğu kez günlerce ne yemek ne uyku aklına gelir, kendisini çalışmasında unuturdu.

Biraz önce belirttiğimiz gibi, Newton başlıca kuramlarının ana çizgilerini genç yaşında oluşturmuştu. Ne var ki, ulaştığı sonuçları açıklamada acele etmek şöyle dursun, onu bu yolda yirmi yıl geciktiren bir çekingenlik içindeydi.

Dostu Edmund Halley’in (Halley kuyruklu yıldızını bulan astronom) teşvik ve ısrarı olmasaydı, bilim dünyasının en büyük yapıtı sayılan Doğa Felsefesinin Matematiksel İlkeleri (1687′de yayımlanan kitap genellikle “Newton’un Principia’sı” diye bilinir) belki de hiç bir zaman yazılmayacaktı. Bu gecikmede bir neden de Robert Hooke adında dönemin tanınmış bilim adamlarından biriyle aralarında süren kavgaydı.

Hooke, evrensel çekim yasasında kendisinin de öncelik payı olduğu savındaydı (Newton’un bir başka kavgası Alman filozofu Leibniz ileydi. Matematiğin çok önemli bir dalı olan kalkülüs’ü ilk bulan kimdi? Leibniz’i fikir hırsızlığıyla suçlayan Newton, filozofun resmen kınanmasını istiyordu).

Üç ana bölümden oluşan Principia’nın ilk bölümü nesnelerin devinimine ayrılmıştı. Eylemsizlik ilkesi ve serbest düşme yasasıyla temelini Galileo’nun attığı bu konuyu Newton kapsamlı bir kuram çerçevesinde işlemekteydi. Öyle ki, kökü Aristoteles’e ulaşan iki bin yıllık geleneksel düşünce yerini salt mekanik dünya görüşüne, belli sınırlar içinde geçerliğini bugün de koruyan bir paradigmaya bırakmıştır artık.

Galileo’nun deneysel olarak kanıtladığı eylemsizlik ilkesi nitel bir kavramdı; Newton bu kavramı “kütle” dediğimiz nicel bir kavrama dönüştürür, devinimin birinci yasası olarak belirler. Örneğin, şekilde görüldüğü gibi, pürüzsüz bir düzlemde A ve B gibi kütleleri değişik iki nesne, sıkışık bir yayın karşıt uçlarına bastırılıp bırakılsın. Yayın ters yönlerde eşit itme gücüne uğrayan nesnelerden kütlesi daha büyük olan A’nın kayma ivmesi, kütlesi daha küçük olan B’nin kayma ivmesinden daha azdır. Buna göre, m1 ve m2 diye belirlenen kütleler, m1 / m2 = a2 / a1 denkleminde gösterildiği üzere a1 ve a2 ivmeleriyle tanımlanabilir.

Mekanik kuramın bir başka temel kavramı kuvvettir. Yukardaki deneyde sıkışık yayın iki nesne üzerindeki itme kuvvetinin eşitliğinden söz ettik. m1 a1 = m2 a2 olduğundan kuvvetler de m1 a1 ve m2 a2 ile ölçülebilir. Buna göre, m kütlesi üzerinde F gibi bir kuvvet a ivmesine yol açıyorsa, ivmeyle kuvvet arasındaki ilişki şöyle belirlenebilir: F = ma (kuvvet = kütle x ivme). Bu denklem Newton mekaniğinin ikinci devinim yasasını dile getirmektedir.

Mekaniğin üçüncü yasası çoğumuzun günlük deneyimlerinden bildiği bir ilişkiyi içermektedir: her etkiye karşı eşit güçte bir tepki vardır. Örneğin, parmağımızı masaya bastırdığımızda, masanın da parmağımız üzerinde eşit baskısı olur.

Kütle, kuvvet gibi önemli kavramların nicel olarak oluşturulması fiziğin birtakım geleneksel saplantılardan arınmasını sağlayan büyük bir ilerleme olmuştur.

Aristoteles geleneğinde göksel nesnelerin çembersel devinimleri açıklama gerektirmeyen “doğal” bir olaydı.

Dünyanın diğer gezegenlerle birlikte güneş çevresinde döndüğünü ileri süren Copernicus bile çembersel devinim öğretisine karşı çıkmadığı gibi bu devinimi açıklama arayışı içine de girmemiştir. Galileo ile Newton mekaniğinde ise yalnızca aynı doğrultuda tekdüze devinim doğaldır; devinimin yön ya da hız değiştirmesi ancak bir dış kuvvetin etkisiyle olasıdır. Kepler gezegenlerin güneş çevresindeki devinimlerini güneşten kaynaklanan manyetik türden bir kuvvete bağlamış, yerçekimi kavramına ipucu hazırlamıştı.

Newton’un “gravitasyon” dediği kuvvet gezegenlerin eliptik yörüngeleriyle yerküredeki serbest düşmeyi açıklayan evrensel bir güçtür. Buna göre, evrende var olan herhangi iki nesne biribirini kütlelerinin çarpımıyla doğru, aralarındaki mesafenin karesiyle ters orantılı olarak çeker. İlişkinin matematiksel ifadesi: F=Gm. m2/d2

(Denklemde F yerçekimi sabitini, m kütleyi d mesafeyi simgelemektedir).

Newton’un gençliğinde ulaştığı ama yayımlamaktan kaçındığı bu sonuç bir hipotez olarak başkalarınca da tartışılmaktaydı. Nitekim, Kraliyet Bilim Akademisinin üç üyesi (Robert Hooke, Edmund Halley ve Cristopher Wren) eliptik yörüngelerin yerçekimiyle açıklanabileceği sayındaydılar, ancak bu savı kendi aralarında kanıtlayamamaktaydılar.

1684′de Halley sorunu Newton’a iletir. Yerçekimi hipotezini yıllarca önce oluşturan Newton, bu arada, hipotezin matematiksel yoldan kanıtlanmasını da gerçekleştirmişti. Böylesine önemli bir çalışmanın yayımlanmadan kalmasını doğru bulmayan Halley, tüm basım masraflarını yüklenerek Newton’u daha fazla zaman yitirmeden kitabını (Principia’yı) yazmaya ikna eder.

Bilim dünyası hayranlıkla karşıladığı bu ölmez yapıtta, ilk kez, mekaniğin diğer yasalarıyla birlikte yerçekimi kuramının, tüm kanıt ve içeriğiyle, matematiksel olarak işlendiğini bulur. Kitapta, ayrıca, sıvı deviniminden güneş ve gezegenlerin kütlelerinin hesaplanmasına, ay’ın devinimindeki düzensizliklerden denizlerdeki gelgit olaylarına değin pek çok sorunsal konuya açıklık getirilmiştir.

Bir kuramın gücü, kapsadığı olgu alanının genişliğine bağlıdır. Güçlü bir kuram başlangıçta açıkladığı olgularla sınırlı kalmayan, yeni ya da beklenmeyen gözlem verilerine açılabilen kuramdır. Bilim tarihinde bunun belki de en başarılı örneğini Newton mekaniğinin verdiği söylenebilir.

Ancak geniş kapsamına karşın bu kuramın bir eksikliği daha baştan belli olmuştu: yerçekimi gücünün uzay boşluğunda biribirinden milyonlarca mil uzaklıktaki iki nesne arasında bile varsanan etkisi nasıl bir düzeneğe bağlı olabilirdi? “Uzaktan etki” diye bilinen, Newton’un kendisini de rahatsız eden bu sorunun, Einstein’ın genel relativite kuramının sağladığı açıklamaya karşın, bugün bile doyurucu bir açıklığa kavuştuğu kolayca söylenemez.

Principia’nın yazılması yaklaşık iki yıl alır. Polemikten kaçınan Newton, düzeysiz tartışmaları önlemek için Latince kaleme aldığı kitabına yetkin örneğini geometride bulduğumuz aksiyomatik bir biçim verir. Şöyle ki, Newton “öncül” diye aldığı bir kaç temel ilkeden (devinim yasalarıyla yerçekimi kuramından) fizik ve astronominin gözlemsel veya deneysel olarak kanıtlanmış önermelerini (örneğin, Kepler’in üç yasası ile Galileo’nun sarkaç, serbest düşme vb. yasalarını) bir tür “teorem” olarak ispatlama yoluna gider.

Newton eşsiz yapıtıyla bilim dünyasını adeta büyüler; deyim yerindeyse, ona yarı-ilâh gözüyle bakılmaya başlanır. Öyle ki, dönemin tanınmış bir matematikçisi, “Acaba O’nun da bizler gibi yeme, içme ve uyuma türünden günlük gereksinmeleri var mıdır?” diye sormaktan kendim alamaz.

Newton, kuşkusuz ne bir ilâh, ne de günlük gereksinmeleri yönünden diğer insanlardan farklıydı. Onu bilim tarihinde yücelten üç özelliği vardı:

(1)üstün zekâ ve imge gücü;

(2)yoğun çalışma istenci;

(3)evreni anlama ve açıklama merakı.

Az ya da çok, tüm insanların paylaştığı bu özellikler, Newton’da kendine özgü yaratıcı bir sentez oluşturmuştu.

 

Newton yasaları

Harekete neden olan etkiler insanları uzun süre ilgilendirmiş ve bu konuda Galileo ve Newtona dek pek başarılı sonuçlar elde edilmemişti. Galileo’dan önce filozoflar, bir cismi devindirebilmek için kesinlikle bir etkinin, yani bir kuvvetin gerektiğini ileri sürmemişler ve olağan halde bir cismin durması gerektiğine inanmamışlardı. Gerçekten bir düzlem üzerinde bir cisim kaydırılmak istenirse, cismin kısa bir süre gittikten sonra yavaşlayıp durduğu gözlenir. Bu gözlem dış bir kuvvet olamadığı sürece kaymanın olmadığı düşüncesini destekler. Galileo yaptığı deneylerde bu inancın gerçek olmadığını gösterdi. Eğer cisim ve onun üzerinde durduğu düzlen pürüzsüz hale getirilirse ve cisim yağlanırsa, cismin hızının daha yavaş azaldığı ve cismin daha ileride durduğu gözlenir. Buna göre, cismin kayması yavaşlatıcı, yani bütün sürtünmeler, ortadan kaldırılırsa, cismin değişmez bir hızla yoluna bir doğru boyunca sonsuza değin devam sonucu çıkar. Galileo’nun vardığı sonuç bu idi. Ona göre, bu cismin hızını değiştirmek için bir dış kuvvet gerekir; ama belli bir hızda giden cismin hızını koruyabilmesi için bir kuvvete gerek yoktur. Mesela bir sandığı bir düzlemde ittiğimiz durum için, ellimizin verdiği itme sandığa bir hız kazandırır, fakat düzlem sandığa bir kuvvet uygulayarak onu yavaşlatır ve durdurur. Her iki kuvvette hızda bir değişim, yani bir ivme oluşturur. İşte Galileo’nun bulduğu bu gerçeği, Galileo’nun öldüğü gün doğan Isaac Newton bir evrensel yasa olarak 1686′da yazdığı Principia Mathematica Philosophia Naturalis adlı kitabında ortaya koydu.

Newton’un birinci yasası (Eylemsizlik ilkesi)

Herhangi bir cisim üzerine bir kuvvet etki etmiyorsa, ya da etki eden kuvvetlerin bileşkesi sıfırsa, cisim durumunu değiştirmez; yani duruyorsa durur, deviniyorsa yani hareket ediyorsa, devinimini bir doğru boyunca devam ettirir.

a)     Duran bir cisme bir kuvvet etki etmedikçe cisim yine hareketsiz kalır. Bir cisme etki eden kuvvetlerin bileşkesi sıfır (R=0) ise, cisim o anki durumunu korur. Bir cisim için net kuvvet 0 ise ivme a = 0 olur.

b)    Hareketli bir cisme bir kuvvet etki etmezse, cismin hızı ve yönü değişmez. Cisim hareket ediyorsa düzgün doğrusal yani sabit hızlı olarak hareketine devam eder.

c)     Dışarıdan uygulanan bir kuvvetin etkisinde olmayan bir cismin durgun halde kalır yani hareketsiz olur ya da sabit bir hızla hareket eder. Hızın sabit olması doğal olarak ivmenin sıfır olmasını gerektirir.

Newton’un bu birinci yasası gözlem çerçevelerini de tanımlar. Çünkü genel olarak bir cismin ivmesi, yani hızındaki değişim belli bir gözlem çerçevesine göre ölçülür. Birinci yasaya göre cismin çevresinde başka bir cisim yoksa, yani bir cisme belli bir kuvvet etki etmiyorsa, öyle gözlem çevreleri bulabiliriz ki, cismin bu çerçevelerde ivmesi olmasın. Cisimlerin üzerine etki eden kuvvetlerin olmaması durumunda cimlerin durumlarını koruması maddenin bir özelliği olarak alınır ve buna eylemsizlik denir. Newton’un birinci yasasına da çoğu kez eylemsizlik yasası denir ve bunun geçerli olduğu gözlem çerçevelerine eylemsizlik gözlem çerçeveleri denir. Bu çerçeveler durağan yıldızlara göre duran ya da düzgün değişmez bir hızla giden gözlem çerçeveleridir.

Newton’un birinci yasasında görüldüğü gibi, bir cismin durması veya değişmez bir hızla gitmesi arasında fark yoktur. Buna göre, bir eylemsiz çerçevede durduğu gözlenen bir cisim, başka bir çerçeveden bakılınca değişmez bir hızla gider görünür. Her iki çerçeveye göre de cismin bir hızı yoktur. Her iki çerçeveye göre de hız değişmez. Buna göre her iki çerçevedeki gözleyici de cismin üzerine bir kuvvet etkidiği ya da, etki eden kuvvetlerin bileşkesinin sıfır olduğu bulunur.

Eğer cisme bir kuvvet etki ediyorsa, ya da etki eden kuvvetlerin bileşkesi sıfırdan farklıysa, cisim kuvvet yönünde ya da bileşke kuvvet yönünde sabit bir ivmeyle hareket edecektir. Sözkonusu kuvvetle, bu kuvvetin kazandırdığı ivmenin oranı sabittir ve bu orana Eylemsizlik Kütlesi denir.

Formül olarak, Eylemsizlik Kütlesi = Kuvvet / İvme olacaktır.


Newton’un ikinci yasası

Birinci yasadan biliyoruz ki, kuvvet olmadığında cismin hızında bir değişim, yani ivme söz konusu değildir. O halde kuvvet olduğunda, bir ivme yani bir hız değişimi olmalıdır. Kuvvet ile ivme arasındaki bağlantıyı bulabilmek için, önce aynı bir cisme değişik şiddet ve doğrultuda kuvvet uygulanıp F ve a ölçülürse, sonrada farklı cisimlerle aynı ölçmeler yapılırsa şu sonuçlar elde edilir:

1)     Bütün durumlarda ivmenin doğrultusu ile kuvvetin doğrultusu aynıdır. Bu sonuç, cisim başlangıçta durgunda olsa, herhangi bir hızla belli doğrultuda gitse de doğrudur.

2)     Belli bir cisim için kuvvetin şiddetinin, ivmenin değerine oranı değişmez kalmaktadır. F/a=sabit F = m a eşitliğinde görüldüğü gibi kütle, uygulanan kuvvete karşı cismin kazanacağı ivmeye karşı koyan bir nicelik olarak ortaya çıkmaktadır. Yani, aynı bir kuvvetle kütlesi küçük olan bir cisim daha büyük bir ivme, kütlesi büyük olan bir cisim ise daha küçük bir ivme kazanır. Sözgelimi duran ya da hiç değişmeyen bir hızla giden otomobilin (~ 1500 kg) hızında, saniyede 5 m/s lik bir hız değişimi sağlayabilmek için 7500 N luk bir kuvvet gerekirken, aynı hız değişimini bir kamyonda (~2000 kg) sağlayabilmek için 2500 N luk bir kuvvet gerekir. Bu yönüyle kütle, devinime karşı koyan bir niceliktir; başka bir deyimle, ötelenme devinimindeki değişime karşı koyar. Bu açıdan kütleye, öteleme eylemsizliği de denir.

Newton’un ikinci yasası olarak bilinen F = m . a eşitliği vektörel bir eşitliktir. Bir cisme aynı anda çeşitli doğrultularda, çeşitli büyüklüklerde birçok kuvvet etki ettiğinden, cisim bunların bileşkesi yönünde bir ivme kazanır.

Devinim tek boyutta ise bu durumda kuvvetler de tek doğrultuda olacağından, kuvvetlerin büyüklüklerinin cebirsel toplamının kütleye oranı, ivmenin değerini verir. Devinim iki boyutta ise bu durumda kuvvetlerin x,y bileşenleri bulunur, bunların cebirsel toplamının kütleye bölümü o yöndeki ivme bileşeninin büyüklüğünü verir.

İvme uygulanan kuvvetle doğru orantılıdır ve kuvvet yönündedir. Cismin momentumunda zamana göre değişiminin oranı, cisme etkiyen kuvvetle doğru orantılıdır.


Newton’un üçüncü yasası (Etki-tepki ilkesi)

Günlük yaşantımızda bir cisme bir kuvvet uygulanması söz konusu olduğunda, onun herhangi bir yolla itilmesi ya da çekilmesi aklımıza gelir. Sözgelimi asılı bir mıknatıs çubuğunu yaklaştırdığımızda aynı cins kutuplar karşı karşıya geldiğinde, asılı mıknatısın bizde uzaklaşacak yönde gittiğini; zıt cins kutupların karşı karşıya gelmesi durumunda asılı olan mıknatısın bize doğru geldiğini görürüz. Her iki durum için elimizdeki mıknatısın, asılı olan mıknatısa bir kuvvet uyguladığını ve bunun sonucu olarak asılı mıknatısın devinime (harekete) başladığı söyleriz. Bunun yanında, elimizde tuttuğumuz mıknatısın da, diğer mıknatısa yaklaştırılırken çekilip itildiğini hissederiz.

Doğadaki bütün gerçek kuvvetler çevreyle etkileşme sonucu oluşurlar. Bir cisim diğer bir cisme bir kuvvetle etki ettiğinde, diğer cisim de bu cisme bir kuvvet uygular. Buna ek olarak bu kuvvetlerin büyüklükleri eşit, yönleri zıttır. Bu durumda, yalıtılmış tek bir kuvvetten söz edilemez. İki cisim arasındaki etkileşimde bu kuvvetlerden birine «etki» diğerine «tepki» kuvveti denir. Başka bir deyimle,kuvvetlerden birisi «etki» olarak alınırsa, diğeri birinciye karşı «tepki» olarak alınır.

1.      Herhangi bir etkiye karşı her zaman bir tepki vardır ya da iki cismin karşılıklı etkisi daima eşit, fakat zıt özelliklidir.

2.      İki cisim arasında oluşan etkileşmede F kuvveti, ikincinin birinciye etkidiği F kuvvetine eşit fakat zıt yönlüdür.

Büyük bilim adamı ölümünden kısa bir süre önce kendinden şöyle söz etmişti: Dünyaya nasıl göründüğümü bilmiyorum; ama ben kendimi, henüz keşfedilmemiş gerçeklerle dolu bir okyanusun kıyısında oynayan, düzgün bir çakıl taşı ya da güzel bir deniz kabuğu bulduğunda sevinen bir çocuk gibi görüyorum.

 

DENIS PAPIN

Denis Papin, (1647-1712) Fransız fizikçi. İlk biçimi ile otoklav, yemek pişirmeyle ilgili buhar basınçlı tencere (düdüklü tencere) olarak 1681 yılında “The Marmite de Papin” ya da “Papin Digester” adıyla Denis Papin tarafından yapılmıştır. Buhar makinesi mucitlerindendir.

1681‘de düdüklü tencere ‘yi icat eden Fransız bilim adamı. İçindeki basıncı bilmek için bir supap yerleştirmiş, basıncı bir ağırlıkla dengelemişti. Bu gerçek bir “güvenlik supabı”ydı ve kapsamı tencerenin yararını çok aşıyordu.

Suları boşaltma işi madenler bakımından önemli olduğu kadar, daha birçok alanlarda da (kuyudan su çekme, bahçe sulama, çeşmeleri besleme, sarnıçları kurutma) çözüm bekleyen bir sorundu. Tulumbalar tekniği, antik çağdan bu yana, ta 1637′ye kadar, hiç güçlük çıkarmadan işlemişti. Ancak o tarihte Floransa dukasının kuyucuları, bütün çabalarına rağmen suyun yükselmediğini hayretle görünce Galile’ye başvurdular. Bilgin onlara, suyun 10. 33 metreden daha çok yükselemeyeceğini söyledi.

Bu olayın Toricelli’nin de dikkatini çektiğini ve suyun bu düzeyden daha yükseğe çıkamadığına göre, bu yükseklikteki bir su sütununa eşit olan hava basıncının onu dengelediği sonucuna vardığını biliyoruz Bu düşüncenin doğruluğunu, Pascal’ın Puy-de-Döme tepesindeki deneyi de kanıtladı. Buna dayanan Otto von Guericke, Robert Böyle ve Mariotte gaz dinamiğini kurdular. Kısacası, XVII. yüzyılın sonunda bütün fizikçiler, hava basıncının önlemesi sonucu suyun 10. 33 metreden daha çok yükselmeyeceğini biliyorlardı. Bu durumda, suyun daha çok yükselmesini istiyorlarsa, hava basıncını kaldırmaları, yani bir piston aracılığıyla suyun üstünde boşluk sağlamaları gerekiyordu.

Daha doğrusu bu Denis Papin’in teklif ettiği çözüm yoluydu. (1671).  Denis Papin, 22 Ağustos 1647′de Blois’da doğmuş genç bir hekimdi, ama hekimlikten çok fizikle ilgilenmekteydi. Bir yolunu bulup Huygens’le tanıştı ve asistanı oldu.

Büyük dâhi Huygens, Colbert’in dostuydu. XIV. Louis’nin Versay sarayını inşa ettirdiği ve parkına şahane havuzlar, şelâleler yaptırdığı dönemde, ünlü bahçe mimarı Le Nötre, Seine’in sularını önce Marly arkına, oradan da bu parka akıtmanın yollarını arıyor, bu çalışmalarında karşılaştığı bazı pompalama sorunlarını ‘Çözümlemesi için Huygens’e başvuruyordu.

Bilgin bir yandan, sarkaçlı ve zemberekli saatlerin icadına, mekaniğin temel yasalarını bulmaya, öte yandan Cassini’nin ısmarladığı dev astronomik dürbünleri imal etmeye çalışıyordu. Bunlar, onun gözünde, Versay sarayındaki pompalama güçlükleriyle kıyaslanamayacak derecede önemli ve heyecan verici konulardı. Kendini bütünüyle bu çalışmalara adamak için Versay sarayının sularıyla ilgili pratik sorunlarının çözümlenmesini asistanına bıraktı. Böylece Denis Papin, suyu 10. 33 metreden daha yükseğe çıkarmanın çarelerini araştırmaya koyuldu.

Papin’e göre, suyu yükseltmek için borudaki havayı boşaltmak gerekiyordu ve boruyu, bu işe uygun olarak imal edilmiş bir hava boşaltma makinesine bağlamak yeterdi. Ne var ki, sadece laboratuvar deneylerinde başarılı olmaktan öteye gitmeyen bir yolla, bu kadar büyük çapta bir işe girişmenin, parlak sonuçlar veremeyeceğini, Denis Papin de biliyordu.

Bu bilgin ömrü boyunca huzursuz, geçimsiz bir insan olarak yaşadı; hiç bir şeyden hoşnut olmaz, koruyucularını gücendirir, hayallerin ardına takılıp sağlam ve onurlu görevleri geri çevirirdi. Böyle olduğu halde, suyu 10. 33 metreden yükseğe çıkarma işinde ömrünün sonuna kadar sebat göstermesi şaşılacak bir şeydir. Ufak-tefek bazı icatların dışında Papin’in belli başlı kaygısı Versay sarayının suları oldu. Sorun çözümlendiğinde bile Papin hâlâ inatla başka çözümler arıyordu.

1687′de Londra’da bulunduğu sıralarda yeni bir tip tulumba düşündü. Pistonları hidrolik çarkla işleyen bu araç, iki silindirden meydana gelmişti. Pistonlar yukarı kalkınca altında hava boşluğu yaratıyor, hava basıncı bunları yeniden hızla aşağı itiyordu. Uçlarına asılan yükleri de kaldırabiliyordu. Ama ne yazık ki bu tulumba bilim adamlarından oluşan İngiliz Krallık Bilim Akademisinin (Royal Society) önünde işlemedi. Papin bunun nedenini bulmakta gecikmedi: Yeterince hava boşluğu sağlanamamıştı.

Papin, 1688′de Almanya’da Marbourg Üniversitesi profesörü olduğu sıralarda başka bir şey düşündü: Silindirdeki hava boşluğunu, içinde barut patlatarak sağlayamaz mıydı? Böyle bir tasarıyı, 1678′de Paris’te Abbe Jean ve Hautefeulle de ileri sürmüş, Huygens de bunu denemişti. Tulumbanın içine barut keseleri yerleştirecek, bunlar patlayınca çıkacak ateş, supaplar aracılığıyla havayı dışarıya atacaktı. Hava dışarı atıldıktan sonra piston, hava basıncının etkisiyle aşağıya inecekti. Papin, silindir 0. 33 metre çapında olursa, 871 kg. ‘lık bir basınç elde edileceğini hesapladı.

Sonuç yine hayal kırıcı oldu; çünkü barutun patlaması da tam bir hava boşluğu yaratamıyordu. Papin olağanüstü bir inatla deneylerini sürdürdü. 1690′da yeni bir fikir ortaya attı: Tulumbayı su buharıyla doldurmak. . . Buhar, sıvı haline geldiğinde hacmi çok küçüleceğinden silindirin içinde tam bir hava boşluğu bırakacaktı.

Böylece buhar makinesinin belli başlı ilkesi ortaya atılmış oluyordu. Gerçi buharlaşan suyun hacminin çok arttığı ve bu artışın yarattığı güçten yararlanılabileceği daha önce de savunulmuştu, ama nasıl yararlanılacağı tutarlı bir şekilde ortaya konmamıştı. İtalyan Porta (1538-1615) ve Fransız Salomon de Caus (1576-1626), Buharın, kaplardaki suların boşaltılmasında kullanılmasını teklif ettiler. 1626′da İtalyan mimarı Giovanni Branca (1571-1640) buhar püskürtülmesiyle çarkları çevirmeyi, İngiliz Marquis Edward da (1601-1667), kaynamış suyla dolu bir topu patlatmış olduğunu ileri sürdü.

Bütün bunlar, teklif ya da deney aşamasında gerçekten işleyebilir makineler olmaktan uzaktı. Buna karşılık. Denis Papin’in 1690′da Actes de Leipzkj’de tanıttığı makine bambaşkaydı ve yepyeni ufuklar açıyordu, içinde bir pistonun buhar gücüyle gidip geldiği bir silindirdi bu. Silindirin dibinde bir miktar su bulunmakta, piston da suyun düzeyinde durmaktaydı. Yapılacak işlem şuydu: Silindir, su buharlaşıncaya kadar ısıtılacak; o zaman buhar pistonu kaldıracak; bu safhada ateş uzaklaştırılacak; su soğuyunca yerine hava boşluğu bırakacağından, piston hava basıncının itişiyle aşağı inecekti. Hem öylesine bir güçle inecekti ki, bu güç rahatlıkla bir yükü kaldırabilecek ya da bir tulumbayı işletebilecekti.

Ancak, bu makinenin aksayan yanı apaçık ortadaydı. Silindir kapalı olduğundan su bitince yeniden doldurulamayacaktı. Üstelik buhar iyice soğumadan piston inemeyeceğinden, soğumasını beklemek gerekecekti. Yani bu makine sabırları tüketecek kadar yavaş işlemeye mahkûmdu. Buluş parlak olmakla birlikte, kullanışlı bir makine halini alabilmesi için geliştirilmesi gerekiyordu. Mucit biraz ilgi görmüş olsaydı kendisini bu işe verirdi, ama icadı tam bir kayıtsızlıkla karşılanmış, Actes de Leipzig’deki makalesi yayımlandıktan hemen sonra unutulmuştu.

 

AntoIne Laurent LavoIsIer

(1743 -1794) Lavoisier yaşam döneminde oluşan iki devrimin paylaştığı bir kişidir. Devrimlerden biri, yüzyıllar boyunca “simya” adı altında sürdürülen çalışmaların, bugünkü anlamda, kimya bilimine dönüşmesidir. Lavoisier bu devrimin kahramanıdır. İkinci devrim, “1789 Fransız ihtilali” diye bilinir. Lavoisier bu devrimin getirdiği terörün kurbanıdır.

Antoine-Laurent Lavoisier Parisli zengin bir ailenin çocuğu olarak dünyaya gelir. Daha küçük yaşında iken annesini yitiren Lavoisier babasının yakın ilgi ve bakımıyla büyür; başlangıçta belki de onun etkisiyle hukukçu olmaya yönelir. Ancak bu arada uyanan deneysel bilim merakı çok geçmeden bir tutkuya dönüşür.

Yirmibir yaşına yeni bastığında, Paris’in sokaklarını aydınlatma proje yarışmasında birinciliği alır, Fransız Bilim Akademisi’nce altın madalya ile ödüllendirilir. Yirmibeş yaşına geldiğinde, özellikle kimya alanındaki çalışmaları göz önüne alınarak Akademi’ye üye seçilir.

Bu arada hükümetin özel bir komisyonunda görevlendirilen genç bilim adamı, metrik sistemin oluşturulması, Fransa’nın jeolojik haritasının çıkarılması gibi etkinliklerden tarımda verimin yükseltilmesine uzanan pek çok uygulamalı bilim çalışmalarını düzenler. ayrıca o sırada bir tür abluka altında olan ülkesinin savunma ihtiyacı barutun üretim sorumluluğunu üstlenir.

Genç bilim adamı bu kadarla da yetinmez; ilerde yaşamını yitirmesine yol açan bir işe, ülkenin bozuk vergi sistemini düzeltme işine el atar. Ama tüm bu uğraşlarına karşın Lavoisier kendisini asıl ilgilendiren bilimden kopmamıştır; her fırsatta özel laboratuvarına çekilip deneylerini sürdürmekten geri kalmaz.

Lavoisier bilim dünyasında en başta yanma olayına ilişkin geliştirdiği yeni kuramıyla ün kazanır. Ne ki, kimya devrimini oluşturmada başka önemli çalışmaları da vardır. Ayrıca, deneylerinde, özellikle ölçme işleminde gösterdiği olağanüstü duyarlılık, kendisim izleyen yeni kuşak araştırmacılar için özenilen bir örnek olmuştur. Kimya dil, mantıksal düzen ve kuramsal açıklama yönlerinden bilimsel kimliğini Lavoisier’e borçludur. Tüm bu çalışmalarında ona büyük desteği eşi sağlar: deney şekillerini çizer, yabancı dillerden kaynak çeviriler yapar, makale ve kitaplarını yayıma hazırlar.

Lavoisier araştırmalarına başladığında, kimyada Antik Yunanlıların maddeye ilişkin dört element (toprak, su, ateş ve hava) öğretisinin yanı sıra yanmaya ilişkin flogiston kuramı geçerliydi. Bilindiği gibi, bir tahta ya da bez parçası yandığında duman ve alev çıkar, yanan nesne bir miktar kül bırakarak yok olur.

Yürürlükteki kurama göre, yanma, yanan nesnenin “flogiston” denen, ama ne olduğu bilinmeyen, gizemli bir madde çıkarması demekti. Odun kömürü gibi yandığında geriye en az kül bırakan nesneler flogiston bakımından en zengin nesnelerdi. Bilim adamlarının çoğunluk doyurucu bulduğu bu kurama ters düşen kimi gözlemler de yok değildi. Bunlardan biri yanma için havanın gerekliliğiydi. Bir diğeri, kurşun gibi madenlerin, erime derecesinde ısıtıldığında, yüzeylerinde oluşan “calx”ın, madenin eksilen bölümünden daha ağır olmasıydı.

Aslında yanma olayını açıklamadaki güçlüğün bir nedeni gazlara ilişkin bilgi eksikliğiydi. 1756′da İskoç kimyageri Joseph Black “sabit gaz” dediği karbon dioksidi CO2 buluncaya dek bilinen tek gaz hava idi. İngiliz kimya bilgini Joseph Priestley daha sonra deneysel olarak on kadar yeni gaz keşfeder. Bunlardan biri onun “yetkin gaz” dediği, ilerde Lavoisier’in “oksijen” adını verdiği gazdır.

Priestley, oksijeni bulmasına karşın flogiston kuramından kopamaz. Üstün bir deneyci olan bu İngiliz bilim adamı, kuramsal yönden rakibi Lavoisier ile boy ölçüşecek yeterlikte değildi.

Lavoisier yanma olayı ile 1770′lerin başında ilgilenmeye başlamıştı. Kapalı bir kapta fosfor yakınca gazın ağırlığının değişmediğini, oysa kabı açtığında havanın içeri girmesiyle birlikte gazın ağırlığının az da olsa arttığını saptamıştı. Bu gözlemin yürürlükteki kurama uymadığı belliydi, ama daha doyurucu bir açıklaması da yoktu.

Lavoisier aradığı açıklamanın ipucunu bir kaç yıl sonra Priestley’le Paris’te buluştuğunda elde eder. Priestley cıva oksit üzerindeki deneylerinden söz ederken bulduğu “yetkin gaz”ın özelliklerini belirtir. Lavoisier yayınlarının hiç birinde Priestley’e hakkı olan önceliği tanımaz; sadece bir kez, “Oksijeni Priestley’le hemen aynı zamanda keşfetmiştik,” demekle yetinir.

Doğrusu, oksijenin keşfinde öncelik Lavoisier’in değildi; ama bu gazın gerçek önemim ilk kavrayan bilim adamı oydu. Priestley’in deneylerini kendine özgü dikkat ve özenle tekrarlamaya koyulur. Belli miktarda havaya yer verilen bir kapta cıva ısıtıldığında, cıvanın kırmızı cıva okside dönüşmesiyle ağırlık kazandığı, havanın ise aynı ölçüde ağırlık yitirdiği görülür.

Lavoisier deneylerinde bir adım daha ileri gider: cıvadan ayırdığı cıva oksidi (calx’ı) tarttıktan sonra daha fazla ısıtır; kora dönüşen kırmızı oksidin giderek yok olmaya yüz tuttuğunu, geriye belli sayıda cıva taneciğiyle, solunum ve yanma sürecinde atmosferik havadan daha etkili bir miktar “elastik akıcı” kaldığını saptar. Elastik akıcı Priestley’in “yetkin gaz” dediği şeydi.

Lavoisier üstelik bu artığın ağırlığı ile cıvanın ilk aşamadaki ısıtılmasından azalan hava ağırlığının da eşit olduğunu belirler. Dahası, cıva oksidin ısı altında cıvaya dönüşmesiyle kaybettiği ağırlık ile çıkan gazın ağırlığı denkti. Bunun anlamı şuydu: yanma, yanan nesnenin flogiston salmasıyla değil, havanın etkili bölümüyle (yani oksijenle) birleşmesiyle gerçekleşmektedir.

Başta önemsenmeyen bu kuram, suyun iki gazın birleşmesiyle oluştuğuna ilişkin Cavendish deney sonuçlarını da açıklayınca, bilim çevrelerinin dikkatini çekmede gecikmez. Cavendish deneylerinde, asitlerin metal üzerindeki etkisinden “yanıcı” dediği bir gaz elde etmiş, bunu flogiston sanmıştı. Ancak Priestley’in bir deneyi onu bu yanlış yorumdan kurtarır. Priestley, hidrojen ve oksijen karışımı bir gazı elektrik kıvılcımıyla patlattığında bir miktar çiyin oluştuğunu görmüştü. Aynı deneyi tekrarlayan Cavendish daha ileri giderek patlamada “yanıcı” gazın tümünün, normal havanın ise beşte birinin tüketildiğini, öylece oluşan çiyin ise an su olduğunu saptar.

Flogiston teorisi yıkılmıştı artık! Yeni teorinin benimsenmesi, kimi bağnaz çevrelerin direnmesine karşın, uzun sürmez. Kimyada geciken atılım sonunda gerçekleşmiş olur.

Lavoisier ulaştığı sonucu Bilim Akademisine bir bildiriyle sunar; ne var ki, tek kelimeyle de olsa Priestley, Cavendish, vb. deneycilerin katkılarından söz etmez.

Lavoisier’in aslında ne yeni kimyasal bir nesne, ne de yeni kimyasal bir olgu keşfettiği söylenebilir. Onun yaptığı, başkalarının bulduğu nesne ve olguları açıklayan, kimyasal bileşime açıklık getiren bir kuram oluşturmak, kimyasal nesneleri adlandırmada yeni ve işler bir sistem kurmaktı. 1789′da yayımlanan Traite Elementaire de Chimie adlı yapıtı, kendi alanında, Newton’un Principia’sı sayılsa yeridir. Biri modern fiziğin, diğeri modern kimyanın temelini atmıştır.

Lavoisier’i unutulmaz yapan bir özelliği de nesnelerin kimyasal değişimlerini ölçmede gösterdiği olağanüstü duyarlılıktı. Bu özelliği ona “Kütlenin Korunumu Yasası” diye bilinen çok önemli bilimsel bir ilkeyi ortaya koyma olanağı sağlar. Lavoisier kimi kez kendi adıyla da anılan bu ilkeyi şöyle dile getirmişti:

Doğanın tüm işleyişlerinde hiç bir şeyin yoktan var edilmediği, tüm deneysel dönüşümlerde maddenin miktar olarak aynı kaldığı, elementlerin tüm bileşimlerinde nicel ve nitel özelliklerini koruduğu gerçeğini tartışılmaz bir aksiyom olarak ortaya sürebiliriz.

1794′de solunum üzerinde deneylerini yapmakta olduğu bir sırada, Lavoisier Devrim Mahkemesi önüne çağrılır. İki suçlamaya hedef olmuştur: (1) devrim karşıtı olarak karalanan aristokrasiyle ilişkisi; (2) vergi toplamada yolsuzluk (Lavoisier topladığı vergilerin küçük bir bölümünü laboratuvar deneyleri için harcamıştı).

Lavoisier’i kurtarmak için dostları mahkemeye koşmuştu, ama tanık olarak bile dinlenmemişlerdi. “Yurttaş Lavoisier’in çalışmalarıyla Fransa’ya onur sağlayan büyük bir bilgin olduğunda hepimiz birleşiyor, bağışlanmasını diliyoruz,” dilekçesiyle başvuran günün seçkin bilim adamlarına yargıcın verdiği yanıt kesin ve çarpıcıdır: “Cumhuriyet’in bilginlere ihtiyacı yoktur!”

Galileo yaşamının son on yılını Engizisyon’un göz hapsinde geçirmişti. Lavoisier’in sonu daha acıklı olur: elli bir yaşında iken “devrim” adına kafası giyotinle uçurulur.

 

 

ROBERT FULTON

(1765-1811) Hikâye basit bir şekilde başlıyor; Pennsylvania’da (A. B. D. ), 1765′te İrlandalı yoksul bir göçmen ailesinin bir oğlu doğuyor: Robert Fulton. . . Üç yaşındayken babasını kaybettiği ve annenin bakımına kaldığı için çok geçmeden köy okulundan ayrılıp çalışma hayatına atılmak zorunda kalıyordu. Ama bu gencin resme büyük yeteneği ve özellikle eşine az rastlanır bir iradesi, çalışma gücü vardı. Yaptığı portreler sahiplerine tıpatıp benziyor ve genç adam tutkusunun ardından taşralı müşterilerini bir yana koyup şansını denemek üzere Washington’a gidiyor.

Şansının yardımını da görmüyor değil. Günün birinde genç ulusun değerli kişisi Benjamin Franklin’in karşısında buluyor kendini. Delikanlı portreye çalışırken, tutkularını bu değerli kişiye açma fırsatını buluyor: Yeteneklerini Avrupa’da sanatın vatanında geliştirebilir, Franklin acaba kendini orada ün yapmış bir kişiye, sözgelişi Benjamin West’e tavsiye edemez miydi?

Bir süre sonra onu Londra’da görüyoruz. Perukalı, soylu kişilerin portrelerini yapıyor ve tablolarını Royal Academy’de sergiliyordu. Yaşı daha yirmi altı ve kaderi birden değişiveriyor. Stanhope’nin portresini yaparken ünlü mucit onu, sanatını bir yana koyup kendini tekniğe vermesini sağlayacak kadar etkiliyor. Fulton, Stanhope’nin icadının bir püf noktası olduğunu düşünmektedir. Genç Amerikalı paleti, fırçayı bir yana atıp ünlü teknikçinin açtığı yeni ufuklara doğru koşuyor: Watt makinesi, buharlı gemi. . .

Kalbi sonsuz bir heyecanla çarpıyor. Bu defa West’in şaşkınlık dolu bakışları karşısında cetveli alıp bundan böyle ölçekli resimler yapmaya koyuluyor. Kaleminden sırasıyla siper kazma makinesi, mermer kesme cilalama makinesi, kenevir ipliği tezgâhı, kanallar için dip tarama gemisi, bir su arkı ve bir köprü tasarısı çıkıyor. 1796′da da ırmak gemiciliğinin geliştirilmesi üzerine bir makale yayımlıyor.

Bu verimlilik İngilizleri şaşırtıyor. Ressam Fulton’u beğenirken Teknisyen Fulton’un karşısında güvensizlik duyuyorlar. Wattların, Murdockların, Arkwrightların ülkesinde, onun vatandaşlarına bir şeyler öğretebileceğin! sanmak ne görülmemiş cüret! Bu soğuk karşılanma Fulton’u hayal kırıklığına uğratıyor ve Fransızlar belki daha anlayışlı olurlar umuduyla Manş’ı geçiyor.

Primum vivere. . . Önce karın doymalı. Fırçalarını yeniden eline alıyor ve tabiat manzaraları çizmeye koyuluyor. Parisliler onu iyi karşılıyorlar. Sanatı sayesinde Fulton, Laplace, Monge gibi çağın bilim adamlarıyla tanışma imkânını buluyor.

Yıl 1800; Fransa ile İngiltere arasında siyasal gerginlikler baş gösteriyor. Birinci konsül Manş’ın ötesine geçmek istiyor, ama İngiliz donanmasından korkuyor. Ne var ki, öte yandan Fulton bu donanmayı yok etme imkânlarını getirmiş: Denizaltı ve torpil.

İyice belirtelim; söz konusu sadece bir proje ya da bir model değildir. Fulton’un denizaltısı suyun üstünde yelkenlerle, altındaysa elle işletilen bir manivela aracılığıyla ilerleyen 6. 40 m. uzunluğunda bir gemiydi. Balastların içine su doldurmak yoluyla dibe iniyor ve basılmış hava taşıyan bir depo, tayfalara 6 saat yetecek kadar hava sağlıyordu. Gerçekten Fulton’un 1801′de Brest’te 7. 60 metreye dalan “Neutitis” adlı denizaltısı tam altı saat suyun dibinde kaldı. Torpil de bu deneyler sırasında ortaya çıkmıştı. Araç patlayıcı maddeyle dolu bir keseden ibaret olup askerin kendi elleriyle gidip düşman gemisine saplaması gerekiyordu. Bu sakıncaya rağmen deney yine de büyük bir heyecan yarattı.

Napolyon da başta olmak üzere resmi makamların kafasızlığına insan bir kere daha şaşmadan edemez. Kim bilir, belki de Fulton’un elinden tutsalar, onu destekleselerdi yine onun sayesinde İngiliz donanmasını çok zayıflatmayı başarabilirlerdi. İngiltere istilâya uğradı mı, kuşkusuz tarihin akışı değişirdi. Londra Hükümeti bu tehlikeyi sezerek gemi komutanlarını bir denizaltı saldırısına karşı hazır bulunmaları için uyardı. Ayrıca, Fulton’a da projesini satın almayı teklif etti.

Büyük Amerikalı, icadının kapsamını Napolyon’un takdir edemediğini sezerek Jouffroy ve Stanhope’nin hayali olan buharlı gemiyi ele almıştı. Fransızın olumlu çalışmalarından ve vatandaşı Fitch’in aldığı sonuçlardan haberi vardı. Bunlardaki kusurları buldu ve giderebileceğine inandı. Dostlarından birinin, Robert Livingstone’un mali yardımları sayesinde 1803′te ilk buharlı gemisini inşa etti. Bu araç tahtadan yapılmış olup 20-30 m. uzunluğunda, 3. 20 m. genişliğindeydi. Çift etkili bir Watt makinesi 3. 65 m. çapındaki çarkı çeviriyordu. 9 Ağustos günü, akşam saat altıda buharlı gemi Seine ırmağında saatte 4,7 km. hızla dolaştı.

O yıllarda Auxiron ve Fitch ölmüşlerdi. Jouffroy markisi de sürgünde bulunuyordu. Ne var ki Fulton da halkın güvensizliğini yenmekte ötekilerden daha başarılı olamadı. Onlarca icadı eğlenceli bir oyuncaktı, o kadar. Gelecek nasıl olsa yelkenindi. Napolyon belki de donanmasına beklenmedik bir güç verecek olan bu deneylerin sürdürülmesini destekleyecek sabrı gösteremedi.

Fulton’un değeri yalnız, Watt’ınkine eşit diyebileceğimiz bir yaratma dehasına sahip oluşunda değildir. Aynı zamanda kötü şansına eşsiz bir kararlılıkla karşı gelmesini bilmiş, yoluna dikilen önyargılar, çıkarlar, kayıtsızlıklar ve kötü niyetli kimselerle, görülmemiş bir inat ve azimle savaşmıştır.

Fransa ve İngiltere değerini takdir edemediler, öyle mi? 1806′da vatanına dönüyor. Ona olan güvenini kaybetmeyen dostu Livingstone’un sayesinde New York’ta Charles Brown’ un tersanesinde bu defa gerçek bir buharlı yolcu gemisi inşa etmeye koyuluyor. Ve 10 Ağustos 1807′de “Clermont” Hudson’un sularına indiriliyor.

Clermont 40 m. uzunluğunda 3. 60 m. genişliğinde ve sualtı derinliği 2 m. ‘yi bulan bir tekneydi. 4. 60 m. çapındaki iki çarkını iki silindirli, güçlü bir Watt makinesi çeviriyordu. Vapur, gazetelerin günlerden beri alay konusu ettikleri “bu Fulton delisi”ni görmeye gelen kalabalığın önünde demir aldı. Ama gemi rıhtımdan ayrılıp yelken açmadan ve öteki teknelerin arasından, dümencisine uysalca uyarak geçip uzaklaşınca, bütün bu alayların sonu geldi. Rıhtımı önce bir sessizlik, sonra da çılgın alkışlar kapladı. Fulton zaferi kazanmıştı.

Clermont, Hudson üzerinde, New York-Albany (260 km. uzaklıkta) arasında düzenli seferler yapmaya başlayacağı 7 Ağustos gününde bu 260 km. ‘lik yolu 32 saatte aldı. iyiden iyiye ağız değiştiren gazetelerin, yeni icadı hararetle övmelerine rağmen vapura tek yolcu bile binmeye cesaret edememişti. Dönüşte ise yalnız bir yolcu bindi ve Fulton adamın altı dolarını büyük bir heyecanla aldı. Zaferi, çetin bir mücadelenin meyvesi olmuştu, ama kesindi. Kısa zamanda araçların sayısı artmaya başladı. 1811′de Clermont’a üç kardeş daha ekledi ve Fulton-Livingstone Firması başarılara doğru hızla ilerlemeye başladı.

 

JOHN DALTON

(1766 -1844) İnsanoğlu maddenin temel parçacık fikrine çok eskiden ulaşmıştı. Antik Yunan düşünürleri için toprak, hava, su ve ateş tüm diğer maddeleri oluşturan asal nesnelerdi. Aristoteles bunlara “yetkin göksel nesne” dediği bir beşincisini eklemişti. Atom kavramım ilk kez ortaya atan Democritus ise bir parçacığın belli bir küçüklükle sınırlı kaldığı, daha fazla bölünmeye elvermediği savındaydı. Ona göre, tüm maddeleri oluşturan atomlar tek türden nesnelerdi. Maddelerin görünürdeki farklılığı atomların sadece değişik düzenlenmelerinden ileri gelmekteydi.

Ondokuzuncu yüzyıla gelinceye dek bu düşüncede belli bir ilerleme gözlenmez. İlk kez John Dalton modern atom teorisine yol açan bir atılım içine girer. Atom, molekül, element ve bileşiklere ilişkin kimya alanında günümüze değin süren başlıca gelişmelerin bu atılımdan kaynaklandığı söylenebilir.


Atom kavramına bilimsel kimlik kazandıran Dalton kimdi?

John Dalton, İngiltere’de geçimini el dokumacılığıyla sağlayan yoksul bir köylünün çocuğu olarak dünyaya gelir. Küçük yaşında dinin yanı sıra matematik, fen ve gramer derslerine de programında yer veren bir tarikat okulunda öğrenimine başlar. Özellikle matematikte sergilediği üstün yetenek ona yerel çevrede ün kazandırır.

Oniki yaşına geldiğinde, kendi okulunu açmak için yetkililerden izin alır. Aralıksız onbeş yıl sürdürdüğü öğretmenliği döneminde genç adam yüzlerce köy çocuğunu eğitmekle kalmaz, matematik ve bilime olan merak ve tutkusu doğrultusunda kendini de yetiştirir. Onun ömür boyu süren bir yan tutkusu da hava değişimleri üzerindeki gözlemleriydi. Çeşitli yörelerden topladığı hava örneklerini konu alan çözümlemeleri, havanın hep aynı kompozisyonda olduğunu gösteriyordu.

Dalton’un anlamadığı bir nokta vardı: Gazlar neden tekdüze bir karışım sergiliyordu? Karışımda, örneğin, karbondioksit gibi ağır bir gazın dibe çökmesi niçin gerçekleşmiyordu? Sonra, gazların karışımı yalnızca esinti veya termal akımlara mı bağlıydı, yoksa başka etkenler de var mıydı?

Dalton iyi bir deneyci değildi ama, sorusuna yanıt arayışında laboratuvara girmekten kaçınamazdı. Deneyi basitti: Ağır gazla dolu bir şişeyi masa üzerine yerleştirir, üstüne ağızları birleşecek şekilde hafif gazla dolu bir şişeyi baş aşağı kor. Beklenenin tersine, ağır gaz alt şişede, hafif gaz üst şişede kalmaz; iki gaz çok geçmeden tam bir karışım içine girer.

Dalton bu olguyu, sonradan “basınçların tikel teorisi” diye bilinen bir önermeyle açıklar. Buna göre, bir gazın parçacıkları başka bir gazın parçacıklarına değil, kendi türünden parçacıklara geri itici davranır. Bu açıklama, Dalton’u geçerliği bugün de kabul edilen bir varsayıma götürür: Her gaz kütlesi, biribirine uzak aralıklarda devinen parçacıklardan oluşmuştur.

Bu çalışmalarıyla bilim çevrelerinde adı duyulmaya başlayan Dalton, 1793′te Manchester Üniversitesi’ne öğretim görevlisi olarak çağrılır. Üniversitede matematik ve fen dersleri veren genç bilim adamı, meteorolojik gözlemlerini yayınlaması üzerine, Manchester Yazım ve Bilim Akademisi’ne üye seçilir.

Elli yıl süren üyelik döneminde Dalton, Akademiye yüzden fazla bildiri sunar, bilimsel konferanslarda aktif rol alır. Katıldığı son toplantılardan birinde övgü yağmuruna tutulduğunda, “Beni yaptıklarımda başarılı buluyorsanız, beğeninizi büyük ölçüde her zaman dikkat ve özenle sürdürdüğüm çabaya borçluyum,” diyerek gençlere bir mesaj ulaştırmak ister (yaklaşık yüzyıl sonra Thomas Edison da kendi başarısını benzer sözcüklerle dile getirmişti: “Deha’ dediğimiz şeyin yüzde birini esine, yüzde doksan dokuzunu alın terine borçluyuz”).

Dalton’u maddenin atom teorisine yönelten gereksinme atmosfer olaylarına ilişkin açıklama arayışından doğmuştu. Daha önce İrlandalı bilim adamı Robert Boyle de hava kompozisyonu ve hava basıncı üzerinde yoğun araştırmalarda bulunmuştu. Havanın bir kaç değişik gazdan oluştuğu buluşu Boyle’a aittir.

Aradan geçen zaman içinde Cavendish, Lavoisier, Priestley gibi seçkin bilim adamları da havanın kompozisyonunda oksijen, nitrojen, karbondioksit ve su buharının yer aldığını saptamışlardı. Ama bunlardan hiçbirinin atom teorisinin sağladığı açıklamaya yöneldiğini görmüyoruz.

Dalton bir bakıma kimyayı ve kimyasal çözümlemeyi tanımlayan ilk kişidir. Ona göre, kimyanın başlıca işlevi maddesel parçacıkları biribirinden ayırmak ya da biribiriyle birleştirmektir. Onun sözünü ettiği bu parçacıklar maddenin, o zaman bölünmez, parçalanmaz sayılan en ufak öğeleri, yani atomlardı.

Bilindiği üzere, kimya sanayiinde bir bileşiğin istenen miktarda üretimi için her bileşen maddeden ne kadar gerekli olduğunu belirlemek önemlidir. Dalton’a gelinceye dek bu belirleme “el yordamı” dediğimiz sınama-yanılma yöntemine dayanıyordu.

Dalton bu işlemin daha güvenilir bir yöntemle yapılmasını sağlamak için bir atomik ağırlıklar tablosu hazırlar. Deneylerinde, bileşen maddelerin ağırlıkları arasında küçük tam sayılarla belirlenebilen basit ilişkilerin olduğunu görmüştü. Gerçi belli bir bileşim için aynı bileşenlerin daima aynı oranda işleme girdiği, öteden beri biliniyordu.

Dalton bir adım daha ileri giderek, aynı iki madde birden fazla şekilde birleştirildiğinde, ortaya çıkan değişik sonuçların da biribirleriyle basit sayılarla ifade edilebilen ilişkiler içinde olduğunu gösterir. Örneğin, bataklık gazında bulunan hidrojen, etilen gazında bulunan hidrojenden iki kat daha fazladır. Başka bir örnek: Dört kurşun oksit’te bulunan oksijen miktarı l, 2, 3, 4 gibi basit orantılar içindedir.

Bu basit tam sayılar, Dalton’u maddesel nesnelerin “atom” denen sayılabilir ama bölünmez birimlerden oluştuğu düşüncesine götürmüştü. Her elementin değişik bir atomu olduğu, kimyasal bileşimlerin değişik atomların katılımıyla gerçekleştiği, bu katılımda atomların herhangi bir değişikliğe uğramadığı gibi noktaları içeren Dalton’un atom teorisi modern kimyanın temel taşı sayılsa yeridir.

Dalton bu kadarla kalmaz, kimi değişik atomların göreceli ağırlıklarım da belirler. En hafif madde olarak bilinen hidrojenin atomik ağırlığını “l” diye belirler. Ardından, suyun ayrıştırılmasıyla ortaya çıkan her parça hidrojene karşılık sekiz parça oksijen olacağını söyleyerek, oksijen atomlarının hidrojen atomlarından sekiz kat daha ağır olduğunu ileri sürer. Bu yanlıştı kuşkusuz.

Dalton suyun H2O değil, HO olduğunu sanıyordu (Biz şimdi oksijenin atomik ağırlığının hidrojeninkinin sekiz değil 16 katı olduğunu biliyoruz. ) Ama bu yanlışlık onun düşünce düzeyindeki büyük atılımın önemini azaltmaz elbette. Unutulmamalıdır ki, atomların nasıl bir araya gelip şimdi “molekül” dediğimiz bileşik atomlar oluşturduğunu gösteren kimyasal simgeler dizgesinde de ilk adımı ona borçluyuz.

Dalton kimi kişilik özellikleriyle de sıra dışı bir kişiydi. Yaşam boyu bekar kalmasına karşın, karşı cinse ilgisiz değildi. 1809′da Londra’yı ziyaretinde kardeşine yazdığı mektuptan şu satırları okuyoruz: “Bond Street defilelerini kaçırmıyorum. Beni sergilenen giysilerden çok güzellerin yüzleri çekiyor. Bazıları öylesine dar giysilerle çıkıyorlar ki, vücut çizgileri tüm incelikleriyle ortaya dökülüyor. Bazıları da geniş şal veya pelerinleriyle adeta uçuşarak yürüyorlar. Nasıl oluyor bilmiyorum ama güzel kadın ne giyerse giysin fark etmiyor: Giyim kuşam başka, güzellik başka!”

Büyük kent yaşamının ilginçliği onun için gelip geçiciydi. Mektubunda büyüleyici bulduğu Londra’dan şöyle söz eder: “Gerçekten görkemli bir yer, ama ben bu görkemi bir kez seyretmekle yetineceğim. Kendini düşün yaşamına vermiş biri için yaşanılacak belki de en son yer burası. Görülmeye değer, ama işte o kadar!”

Renk körlüğü tıp dilinde “daltonizm” diye geçer. Dalton renk körüydü, zamanının bir bölümünü bu hastalığı incelemekle geçirmişti. Bir ödül töreninde kralın önüne çıkacaktı. Renkli diz bağı, tokalı ayakkabı, elinde kılıç protokol gereğiydi. Oysa bağlı olduğu Quaker tarikatı buna izin vermiyordu. Dalton, çözümü bir süre önce Oxford Üniversitesi’nce kendisine giydirilen onur cübbesine bürünmekte buldu. Cübbenin yakasının kırmızı olması başka bir sorun olabilirdi; ancak, Dalton için yaka kırmızı değil yeşildi.

Dalton’un çalışmalarıyla kimyanın matematiksel bir nitelik kazandığı, bir bakıma fizikle birleştiği söylenebilir. Maddenin elektriksel olduğu düşüncesini de ona borçluyuz. Çağımızda atom enerjisine ilişkin buluşların kökeninde Dalton’un payı büyüktür. Dalton, kendi gününde olduğu gibi günümüzde de süren etkisiyle bilim dünyasında saygın konumunu korumaktadır.

 

JAMES WATT

1769/ Gerçekten, kömür madeni işletmecilerinin böylesine masraflı bir makineyi kullanmaları için birer “Krezüs” olmaları ya da başlarının çok sıkışması gerekiyordu. Bu makine aslında üretilen malın yüksek bir oranını yutmaktaydı. Şikâyetler çoktu ama, yapımcılarının elinden bir şey gelmiyordu. O günün teknik imkânlarına göre makine ‘azami’ derecede geliştirilmişti ve artık olduğu gibi kabullenmekten başka çıkar yol yoktu.

Buhar makinesinde teknik kendine düşeni yapıp bitirmişti. Bundan sonra gelişme ancak bilimin başarabileceği bir işti. Çünkü şu ya da bu parçanın geliştirilmesi değil, makinenin bütünüyle bilimsel yönden ele alınıp gözden geçirilmesi gerekmekteydi.

Bilimin bu tür bir icada karışması, şimdiye kadar anlattıklarımızdan da anlaşılacağı gibi, sık görülen bir olay değildi. Çünkü rasyonel yöntem, bilimin bir dalından ötekine ağrr ağır geçiyordu. Eski Yunanda geometri bilimi, etkisini mimaride hemen göstermişti. Akropol bunun en açık örneğidir. Kepler, Galile ve Newton zamanında astronomi bilimi etkilerini büyük coğrafi keşiflerde ve bunların getireceği siyasal, ekonomik ve toplumsal değişimlere yol açan gemicilikte gösterdi, işte şimdi bilim üçüncü defa etkisini göstermek üzereydi: Galile, Toricelli, Pascal, Otto von Gerioke, Boyle ve Mariotte ile ‘gazların dinamiği’ bilimi doğuyordu.

Bilimsel düşüncenin bu üçüncü icadı, uygarlık alanında ötekilerden de büyük bir devrim yaratacaktır. Çünkü birincisinin sanatı ve Hellen düşüncesini geliştirmesine, ikincisinin okyanuslararası geniş çapta ticareti ve İngiltere’nin üstünlüğünü sağlamasına karşılık, üçüncüsü, sanayi ve mekanik uygarlık çağını açacak, kapitalist burjuvaziye ve bilimsel düşünceye yepyeni bir hız verecektir.

1756′dan beri Glasgow Üniversitesinde bir kimya ve tıp dersleri vermekte olan Joseph Black (1728-1799), o tarihte tanınmış bir bilim adamıydı. Doktora tezi, ilk keşfinin “karbonik gaz”ın tanıtımı olmuştu. Konferansında o gün, başka bir keşfinden, “ısı ve gaz”dan söz ediyordu.

Toricelli’den Mariotte’a kadar birçok fizikçiler sayesinde “gaz teorisi”nin geliştiği o günlerde “ısı” üzerine henüz pek az şey bilinmekteydi. Buz neden erir? Su ısındıkça neden buharlaşır? Maddeler katı, sıvı ya da gazken neden durum değiştirirler? O güne kadar rasgele cevaplar verilen sorulardı bunlar.

İlk akla yakın düşünceyi ileri’ süren Fransız fizikçisi Guillaume Amontons (1668-1705) oldu. Amontons’a göre bütün maddelerde “kalorik” denilen ve ölçülemeyen bir akışkan madde bulunmaktaydı Maddelerin değişmeleri, bu ‘kalorik’in az ya da çok miktarda bir araya gelmesinden oluşuyordu. Bu ölçülemeyen esrarlı akışkanlığa bugün rahatça ‘saçma’ diyebiliriz; ama bunun verimli deneylere yol açan bir varsayım olduğunu da unutmamalıyız. Gerçekten de, Amontons’un “kalorik” hakkındaki bu varsayımı, altmış yıl sonra Black’in deneylerine temel olacak ve Watt makinesini icat eder etmez de uygulama alanına girecektir.

Black’in ilk gözlemi şu oldu: Belli miktardaki bir kısım maddelerin sıcaklığını bir derece yükseltmek için değişmeyen bir miktarda ısı vermek gerekmektedir. Bu, o maddenin “özgül ısı”sıdır. Black bundan sonra “o” derecede buz ve sıvı suyun ‘özgül ısı’sını oranladı. Buzu eritmek için verilecek ısının, sıvı suyun ısısını bir derece yükseltecek sıcaklıktan 79. 5 kat fazla olduğunu gördü. Bu da, buzun sıvı sudan çok daha fazla ısı depo ettiğini, katı hale gelirken bu ısıyı salıverdiğini kanıtlıyordu.

Bilgin, daha sonra su buharında da buna benzer bir oluşumun varlığını gözlemledi. 99 derece suyu, 100 dereceye yükseltmekle buharlaştırmak aynı şey değildi. Birincisi için 1 derece ısı yeterliyken, ikincisi için, 537 derece ısı gerekmekteydi. Başka bir deyimle, bir gram suyu 1 dereceden 100 dereceye getirmek için 100 kalori yeterken, 100 dereceden, buhar haline getirmek için 537 kalori vermek gerekiyordu. Bu da, buhar elde etmenin ısıtmaktan kat kat pahalı olduğunu göstermekteydi.

Prof. Black, bunları Glasgow Üniversitesinde anlatırken, sıralardan birinde oturan James Watt adlı bir. işçi de;, harıl harıl not alıyordu.

James Watt, Üniversitenin ve doğrudan Prof. Black’ir koruması altındaydı. Durumu, aynı zamanda ortaçağ loncalarının ayrıcalıklarını XVII. yüzyılda bile hâlâ nasıl savunduklarına tipik bir örnektir. James Watt, 19 Ocak 1736′da İskoçya’da, Glasgow’dan 30 km uzakta, Greenock’da doğmuştu. Çocukluktan babasının atölyelerindeki gemicilikle ilgili kronometre, pusula, oktan ve sekstan gibi araçlara ilgi duymaya başladı Bu hevesi, büyüdükçe arttığından ailesi’ onu ayarlı araçlar yapımcılığını öğrenmesi için Londra’ya’ göndermeye karar verdi.

Loncalardan ‘protesto’ sesleri ta o zamandan yükselmeye başladı. Watt’ın bağlı olduğu lonca, çıraklarını üyeleri arasından alır ve yedi yıllık bir çıraklık dönemini gerekli sayardı. Bu, Watt’ın işine gelemezdi, çünkü ailesinin mali” durumu, bir an önce hayata atılıp para kazanmasını gerektiriyordu. Bir yıllık bir çalışmadan sonra Glasgow’a döndü; ve ayarlı araçlar satan bir dükkân açmaya karar verdi.

Loncalar ikinci defa karşısına dikildiler; mesleğin bütün aşamalarından geçmemiş bir kimsenin dükkân açmaya hakkı yoktu. Üniversite ona yardım elini uzatmasaydı genç adam açlıktan ölmeye mahkûmdu. Üniversite onu “matematik araçlar yapımcılığına atadı.

Şimdi Watt’ın hayatı yepyeni bir düzene girmişti. Bir yandan fizik laboratuvarındaki araçların onarılmasıyla uğraşıyor, öte yandan da, büyük ilgi duyduğu Prof. Black’in konferanslarını izliyordu. Böylece 1763′te ilk olarak Newcomen’in makinesiyle karşılaştı. Makineyi onardıktan sonra fizik laboratuvarına geri vermeden önce işleyişini bir süre şaşkın seyretti. Makine kesik kesik çalışıyor. Birkaç hareketten sonra bütün buharı harcadığından duruyor, kazan yeniden buhar yapıncaya kadar çalışmadan kalıyordu. Üstelik çok buhar harcıyordu.

Genç İskoçyalı, böylesine obur bir makinenin ne kadar masraflı olduğunu görünce bunun “nedeni”ni bulmayı aklına koydu Prof. Black’in derslerinin ve kendi kişisel deneylerinin ışığı altında araştırmalara girişti. İşe, belirli miktarda kömürün ne hacimde buhar sağladığını bulmakla başladı. Böylece Black’in dediği gibi, masrafın büyük kısmı, suyun 100 dereceye yükseltilmesinden değil, buharlaşması için gereken 537 kat fazla kaloriden ileri geliyordu. Önce kömür gibi pahalı bir maddenin israf edilmesinin önüne geçmek, sonra da ısının kaybolmasını önlemek gerekiyordu.

Watt işe, kazan, silindir ve boruları da içine almak üzere bütün makinenin ısısını saklayıcı tedbirler almakla başladı. Ancak, bu tedbirlerin beklediği sonucu vermediğini hemen gördü. Her piston hareketinde silindirin içine soğuk su fışkırıyor ve bunun sebep olduğu ısı düşüşü yetmiyormuş gibi, sıvılaşma da tam olmuyordu. Sıvılaşmadan sonra su 75 derece dolayında duruyor, silindirde pistonun düşmesini engellemeye yetecek kadar, yarım atmosferlik bir buhar basıncı kalıyordu. Dolayısıyla kaybedilen güç yüzde elliyi buluyordu.

Bunun tek çaresi, buharı mümkün olduğu kadar sıcak ve sıvılaştırıcı suyu da mümkün olduğu kadar soğuk tutmaktı. Watt, bu işlemler için iki ayrı kabın kullanılması gerektiğini düşündü. Silindiri “kalorifüj” (ısıyı koruyan) tedbirlerle sıcak tutmaya, sıvılaşacak buharı da “kondansör” (soğutucu) adını verdiği özel bir kaba göndermeye ve orada rahatça soğutmaya karar verdi.

Silindirin bir tarafının açık olmasının da soğumayı hızlandırdığını gördü. Bunu önlemek için, pistonun iki tarafının da kapatılarak yalnız piston kollarının geçmesine yarayacak kadar delikler bırakmak gerekiyordu. Ancak, bu yeniliğin de bir sakıncası vardı; pistonun iki yanının da kapatılması sonucu içeri hava girmediğine göre, pistonun itilmesi konusunda hava basıncına güvenilemezdi. Genç mucit, bu sakıncayı, hava basıncı yerine pistonun her iki yanma da buhar alarak giderdi. Basınç, böylece ortadan kaldırılıyor, piston denge düzenleyicisinin öteki koluna asılı tulumba kollarının ağırlığı tarafından itilerek harekete geçiyordu.

Watt’ın getirdiği başlıca değişiklik, icadının bir “hava makinesi” değil, bir “buharlı makine” olmasaydı. Hava burada hiçbir rol oynamıyordu. İtici güç buhardı ve Newcomen’in makinesindeki yarım atmosfere karşılık, bir buçuk atmosferlik bir güç yaratmaktaydı.

Watt, maden ocaklarından su boşaltmaya yarayan makinesinin ilk ‘prototip’ini 1769′da meydana getirdi. Gerekli sermayeyi Birminghamlı bir sanayici olan Doktor Roebuck vermişti. İlk makineye “tek etkili” dendi; çünkü iki piston hareketinden yalnız biri itici güce sahipti. Bununla birlikte makine, yıllar süren çabaların ürünüydü, Watt bu uğurda bütün varını yoğunu tüketmiş, üstelik Black ve başkalarına da 300. 000 frank borçlanmıştı. Uzun, acılı ve umutsuz bir dönemden sonra Birminghamlı sanayici, Matthew Boulton’la (1728-1809) tanışması Watt’ın hayatının bütün gidişini değiştirdi. Bu adam dinamik ve açıkgözdü, üstelik iyi hesaplanmış ve kâr getirmesi beklenen bir iş oldu mu tehlikeyi göze almaktan çekinmezdi. Watt’ın “ateşli tulumba”sının Newcomen’inkinden daha güçlü ve ekonomik olması nedeniyle ona üstün gelmesi gerektiğini hesaplayarak Watt’la ortak olup bunların yapımına girişti. Böylece, 1775 Mayısında Sanayi Devrimi’nin de kaderi belirlenmiş oldu.

Önsezisi Boulton’u aldatmadı. Maden ocakları işletmeleri yeni makinenin satışındaki uygun şartların da yardımıyla, art arda ısmarlamaya başladılar. Watt böylece borçlarını ödeyebildi ve üç-beş kuruş para sahibi oldu. Ortağı onu yeni bir tasarıyla etkilememiş olsaydı hayatından memnun, eseriyle yetinip kalacaktı.

Watt’ın “ateşli tulumba”sı madenlerden su çekmek için meydana getirilmiş makinelerin, kuşkusuz, en mükemmeliydi ama, başka alanlara da uygulanmaz mıydı? Denge düzenleyicisinin hareketleri tulumba kolundan başka bir şeyi de harekete getirebilir miydi? Wilkinson makinesini dökümhane körüğüne uygulamıştı. Onlar da bir mekanik testere, bir hadde makinesi, dokuma tezgâhı ya da bir değirmene bağlayamaz mıydı? Kısacası “ateşli tulumba” hayvan gücü, hidrolik çark ya da yel değirmeni gibi, hatta onlardan daha geniş alanlarda uygulanan bir “motor” sistemi haline getirilemez miydi?

Bunun için, önce bu tulumbanın belli başlı bir kusurunu gidermek gerekiyordu. Makine, ancak piston indiği zaman itici güç meydana getirmekteydi. Bu durumuyla düzensiz işleyen bir araçtı. Madenlerden su çıkartma işinde büyük bir sakınca olmamakla birlikte, bir araç-makinede büyük bir kusurdu bu. Yani Boulton’un önerdiği alanlarda kullanılabilmesi için pistonun her iki hareketinin de itici güç doğurması gerekmekteydi.

Watt, 1780′de yeniden işe koyuldu. Çözüm ilke olarak kolaydı: Buharın, pistonun her iki yanına da etki yapmasını sağlamak gerekiyordu. Watt, pistonun iki yanına da buhar göndermeye ve kullanılmış buharı kondansöre itmeye yarayacak bir aygıt düşündü. Hareketlerin düzenli ve sürekli olması için demirden ağır bir düzenteker ekledi. Buharın her iki yana eşit dağılımını sağlayacak bir bilyalı regülatör koydu. Bu regülatör günümüze kadar ‘ters tepkili’ makinelerde kullanılmaktadır.

 

Amadeo Avogadro

(1776-1856) Amadeo Avogadro 1776 yılında dogmustur. Kariyerine avukat olarak baslamistir ve 1796 yılında doktorasini bu konuda tamamlamistir. 1802 yılında Gay-Lussac’in gazlarin genlesmesinin sicaklik artisiyla dogru orantili oldugunu bulmalari uzerine Avagadro hukuku birakip dogru yola yani kimyaya donuyor. (Ne gaz ama. . . )

Daha sonra Avagadro, Dalton’un Atom Teorisi ve Gay-Lussac’in Gaz Kanunlarini birlestirerek, ” Sabit sicaklik ve basincta, esit sayida tanecik bulunduran gazlarin hacimleri de aynidir. ” diyerek kendi adyila anilan Avagadro hipotezini buluyor. Bu ifadede Avagadro dikkatinizi cekmek isterim ki tanecik diyor, yani atomdan baska, molekul kavramini da gundeme getiriyor aslinda.

Ancak Avagadro’nun hipotezi hemen kabul gormuyor, cunku yeni kavramlar getirmisti kimyaya. (sanirim avukat olmasindan kaynaklaniyor :)) 1860 yılında Stanislao Cannizzaro Avagadro’nun goruslerini uygun bir kimya diliyle sundugunda dunya Avagadro’nun Teorisini kabul etmeye basliyor. Ancak Avagadro bunu gorecek kadar uzun yasayamiyor ve 1856 yılında hayata gozlerini kapiyor.

Amedeo Avogadro’nun 1811′de bulduğu bir gaz yasasıdır. Lise yıllarında fizik ve kimya okumuş olan herkes Amedeo Avogadro’nun adını bilir. Zira o, “aynı basınç ve sıcaklıkta, eşit hacimdeki gazlar eşit sayıda molekül içerir” şeklinde özetlenebilecek olan “Avogadro Yasası”nı keşfeden ve bir gramda bulunan molekül sayısını ifade eden 6. 0248 X10^23 rakamını yani “Avogadro Sayısı”nı bulan kişidir.

1776 yılında, İtalya’nın Torino Kenti’nde doğan ünlü fizik ve kimya bilim adamı Amedeo Avogadro, aile geleneğini sürdürerek önce hukuk ve felsefe öğrenimi yaptı; 1789’da felsefe, 1792’de hukuk felsefesi diplomasını, birkaç yıl sonra da din hukukundan doktarasını aldı. Fakat çok geçmeden doğa bilimlerine ve fen bilimlerine duyduğu ilgi onu yoğun bir kendi kendine eğitim faaliyeti yapmaya yöneltti.

1800-1805 yılları arasında matematik ve fizik okudu. Bu sayede 1809’da Vercelli Kraliyet Koleji’nde matematik ve fizik eğitmenliği yapan Amedeo Avogadro, 1821’de Torino Üniversitesi’nde yüksek fizik profesörü oldu. Donna Felicita Mezzi ile evliliğinden altı çocuğu oldu.

Amedeo Avogadro, kendinden iki yıl önce gazların bileşimi hakkında bazı önemli kanunları bulan Gay Lussac’ın çalışmalarından yararlandı ve Lussac Kanunları’nı molekül teorisine uyguladı. Atom ile molekül arasındaki ayrımı da ilk kez farkeden ve buna işaret eden Avogadro, 1856’da öldüğünde fizik ve kimya bilimlerine ve özellikle de Molekül Teorisi’ne yaşamsal önemde katkılarda bulunmuştu.

Ünlü İtalyan bilim adamı Avogadro, 80 yaşında dünyaya gözlerini yumduğunda bilim dünyası, onun bilimsel katkılarının büyük öneminin farkına henüz varmamıştı. Onun bilimsel katkılarının büyüklüğünü ortaya çıkarmak bir başka İtalyan kimyacısı olan Cannizzaro’ya düştü.

1860 yılında yapılan bir bilimsel toplantının ardından, Avogadro’nun kimya alanında oynadığı büyük rol, tüm bilim dünyası tarafından kabul edildi. Avogadro’nun kendi adıyla anılan yasa ve sayı olmasaydı, kimya ve fiziğin bugünkü gelişkinlik düzeyine ulaşması düşünelemezdi. En önemli yapıtı; “Cisimlerin Temel Moleküllerinin Bağıl Kütlelerini ve Bileşimlere Katılma Oranlarını Belirleme Yöntemi Üzerine Bir Deneme”dir.

 

Carl FrIedrIch Gauss

Fakir bir Alman ailenin çocuğu olan ve “Matematiğin Prensi” olarak anılan Gauss’un (1777-1855) dehası çok erken yaşlarda kendini göstermiş ve konuşmayı öğrenmeden önce toplama ve çıkarma yapmayı öğrenmiştir.

Güç koşullar altında sürdürdüğü eğitimini, 14 yaşındayken bir asilin sağladığı destekle güvence altına alabilmiştir. 16 yaşında Eukleides Geometrisi’nin alternatifi olacak yeni bir geometri tasarlamış ve 18 yaşındayken Lagrange ve Newton’un eserlerini incelemiştir.

Üniversitede öğrenciyken, sadece pergel ve cetvel kullanarak 17 kenarlı düzgün bir çokgenin çizilmesi metodunu bulmuştur. Bu buluşundan çok mutlu olmuş ve mezarının üzerine bu çokgenin oyulmasını istemiştir. Archimedes tarafından başlatılan bu geleneğin birçok matematikçiyi etkilediği anlaşılmaktadır.

Sayılar teorisi üzerine yazmış olduğu ilk büyük eseri “Disquistiones Arithmeticae” (Aritmetik Araştırmaları) ona şimdiki ününü kazandırmıştır. Eseri okuyan Lagrange, Gauss’a şunları yazmıştır: “Eseriniz sizi bir anda birinci sınıf matematikçiler arasına yükseltmiştir. Uzun zamandan beri yapılmış en güzel analitik keşfi ihtiva eden son bölümü çok önemli kabul ediyorum. “

Gauss’un bu yapıtı modern sayılar teorisine temel olmuştur. Ona göre, sayılar teorisi çok önemlidir: “Matematik, bilimlerin kraliçesi olduğu gibi, sayılar teorisi de matematiğin kraliçesidir. ” Yeni yüzyılın ilk gününde (1 Ocak 1801) Ceres adı verilen gezegenciğin bulunması, Gauss’un astronomiye ilgisini uyandırmıştır; az sayıda gözlemden yararlanarak bu gezegenciğin yörüngesini hesaplama sorununu, Gauss, 8. dereceden bir denklem yardımıyla çözmüştür.

1802′de bulunan diğer bir gezegencik olan Pallas ile de ilgilenmiştir. İkinci eseri, bu iki gezegenciğin hareketleriyle ilgilidir. 1821 yılında Gauss, resmi bir jeodezi araştırmasına bilim danışmanı olmuş ve bu görevi ona yüzeyler ve haritacılıkla ilgili yeni teoriler ilham etmiştir.

Yıllar geçtikçe Gauss’un ilgisi matematiksel fiziğe ve karmaşık geometri araştırmalarına yönelmiştir. Bu dönemde Yer’in magnetik alanı üzerine deneysel çalışmalar yapmış ve uzaklığın karesiyle ters orantılı olarak etkileyen kuvvetler kuramını ileri sürmüştür.

1833 yılında Weber ile birlikte bir elektrik telgrafı kurmuş ve bununla düzenli mesajlar göndermiştir. Onun elektromagnetizm ile ilgili araştırmalarının 19. yüzyılda fizik biliminin gelişmesine büyük katkısı olmuştur.

Günlüklerinin ve mektuplarının ortaya çıkması, bazı önemli düşüncelerini kendisine saklamış olduğunu göstermiştir; bu belgelerden, Gauss’un 1800 gibi erken bir tarihte, eliptik fonksiyonları keşfetmiş olduğu ve 1816′da Eukleides-dışı geometriyi bildiği anlaşılmaktadır. Eukleidesçi uzay kavramının apriori (önsel) olduğunu savunan Kant’ın isabetliliğinden kuşkulanmış ve uzayın gerçek geometrisinin ancak deneyle bulunabileceğini düşünmüştür.

Gauss sadece bilimsel konularla ilgilenmemiştir; Avrupa edebiyatı, Yunan ve Roma klâsikleri, Dünya politikası, botanik ve mineroloji gibi konular da ilgi alanına girmektedir. Ana dili Almanca ile birlikte, Latince, İngilizce, Danimarkaca ve Fransızca okuyabildiği ve yazabildiği bilinmektedir; 62 yaşında bu dillere Rusça’yı da eklemeye karar vermiş ve iki yıl içinde bu dili de öğrenmiştir.

 

Joseph LouIs Gay-Lussac

Joseph Louis Gay-Lussac (1778 -1850) Fransız kimyager ve fizikçidir. Genellikle gaz yasalarıyla ilgili çalışmalarıyla anılır. Bunun dışında, alkol-su karışımlarıyla yaptığı çalışmalarının ardından bir takım alkollü içkilerin alkol oranlarını ölçmüştür.

Gay-Lussac, Haute-Vienne’deki Saint-Léonard-de-Noblat’da doğmuştur. Eğitimine orda başlayıp, 1794‘te, babasının tutuklanmasının ardından, École Polytechnique’e girmek üzere Paris’e gitmiştir. 1797‘de okula kabul edilip, üç sene orda okuduktan sonra, École Nationale des Ponts et Chaussées’ye geçmiştir. Bir süre sonra Claude Louis Berthollet’nin asistanı olarak atanmıştır. 1802‘de Antoine François de Fourcroy’un yardımcılığını yaptı. École Polytechnique’de, 1809 yılında kimya profesörü oldu. 1808‘den 1832‘ye kadar Sorbonne‘da fizik profesörlüğü de yaptı. Ancak bu görevi, daha sonra Jardin des Plantes’taki kimya kürsüsü için bıraktı. 1831‘de doğduğu vilayet, Haute-Vienne’in temsilcisi olarak seçilmiş, 1839‘da da Chambre des pairs’e katılmıştır.

1809‘da, Gay-Lussac, Geneviève-Marie-Joseph Rojot’yla evlendi. Onunla ilk defa, bir çarşafçı dükkanının çalışanı olarak kimya kitabı okuduğunu gördüğünde tanışmıştı. Beş çocuklarından en büyüğü, Jules, Giessen’e giderek Justus Liebig’in asistanlığını yapmıştır. Jules’ün bazı çalışmaları, aynı baş harfleri yüzünden (J. Gay-Lussac), babasıyla karıştırılmıştır.

Gay-Lussac soyunun bir kısmı Brezilya‘da, Güney Amerika‘da ve Ontario‘da yaşamaktadır.

Gay-Lussac, 1802‘de, Jacques Charles‘ın çalışmalarını kullanarak, günümüzde Charles yasası olarak bilinen yasayı formülize etmiştir.

1804‘te, Jean-Baptiste Biot’yla birlikte, bir sıcak hava balonu kullanarak 6. 4 kilometreye kadar yükseldiler. Atmosferi araştırdığından, farklı yüksekliklerden hava örnekleri alarak sıcaklık ve nemlilikteki farklılıkları gözlemlemeye çalışmıştır.

Alexander von Humboldt’la birlikte, 1805‘te, alçalan basınçla (yükseklikle), atmosferin basit yapısının değişmediğini keşfetmiştir. Aynı zamanda, suyun, iki hidrojen parçası, bir oksijen parçasından oluştuğunu da, Humboldt’la beraber keşfetmiştir.

1808‘de, boru bulanlardan biriydi.

Sorbonne Üniversitesi’ne yakın bir sokak ve otele adını vermiştir. Aynu zamanda doğum yeri olan Leonard de Noblat’da bir meydan ve sokak da onun ismini taşır. Mezarı, Paris’teki ünlü mezar, Père Lachaise‘dir.

 

Georg SImon Ohm

Georg Simon Ohm (1789-1854), Alman fizikçi. Ohm Kanunu olarak bilinen, bir telden geçen akımın, geçtiği alanla doğru orantılı ve uzunluğuyla ters orantılı olduğunu tesbit ederek gerilim, akım ve direnç arasında ki bağlantıyı buldu.

Bir çilingirin oğlu olan Ohm, bir süre babasının yanında çalıştıktan sonra Köln’deki Cizvitler Koleji’nde ve Berlin Harp Okulu’nda matematik ve fizik öğretmenliği yaptı. Köln, Nürnberg ve Münih Üniversitelerinde profesörlük görevi aldı.

Lise öğretmenliği yaparken daha önceden Alessandro Volta tarafından bulunan elektrokimyasal hücreler üzerine çalışmaya ve araştırma yapmaya başladı. Kendi ekipmanlarını kullanarak yaptığı araştırmalar sırasında, bir telden geçen akımın geçtiği alanla doğru orantılı ve uzunluğuyla ters orantılı olduğunu buldu. Bu deney sonuçlarını kullanarak, gerilim akım ve direnç arasındaki bağlantıyı çözdü. Bu denklem oldukça büyük bir gelişmeydi çünkü elektrik devrelerin analizlerinin yapılmasının başlangıcını ve temelini oluşturuyordu. Fakat 1827‘de bu buluşunu yayınlayınca, kolejde hoş karşılanmadı ve lise öğretmenliğinden istifa etmeye zorlandı. Bu onu yoksulluğa itti. 1833‘de Nürnberg‘de profesörlük pozisyonuna kabul edilinceye kadar bu yoksul hayatı devam etti. Üniversitedeki pozisyonu onun için çok iyi bir gelişme oldu.

Elektrik akımını bir sıvının debisi, potansiyel farkını da bir seviye farkı gibi kabul ederek ve elektrik miktarını, şiddetini, elektromotor kuvveti kesin bir şekilde tanımlayarak, elektrokinetik olaylar için bilimsel terimler ortaya koydu. Belirli kesit ve uzunluktaki, belirli bir madenden yapılmış bir teli standart seçerek, öbür teller için bugün ‘direnç’ denilen özelliği “indirgenmiş uzunluk” adıyla tanımladı ve ünlü yasasını, “akım şiddeti = elektroskopik kuvvet / indirgenmiş uzunluk” biçiminde açıkladı. 1826’da yayımladığı makalelerde, Ohm’un bu yasaya tümüyle deneysel yoldan vardığı görülür.

Direnç birimi ohm‘a adını verdi. Ohm’un bulduğu ve bugün Ohm Kanunu olarak bilinen, I = V / R üç değişkenli formül, tüm elektrik devrelerinin temelini oluşturmaktadır. Bu buluşundan sonra bir elektrik devresinde elektromotor gücünün dağılımını keşfetti. Direnç, elektromotor kuvveti ve akım şidddeti arasındaki bağlantıyı buldu.

1830’da A. C. Becguell’in çalışmalarından habersiz olarak pillerdeki kutuplama olayını açıkladı. 1843‘te insan kulağının çeşitli titreşimler arasında, sinüsoidal titreşimleri ayırt ederek algılayabileceğini ispatladı. ayrıca canavar düdüklerinin teorisini kurdu.

1854 yılında ölen fizikçinin yaşamı sırasında bilime yaptığı katkılarından dolayı, yaşarken takdir görmese de, ölümünden yaklaşık otuz yıl sonra adı direnç birimine verilerek onurlandırıldı.

 

MICHAEL FARADAY

(1791-1867) Bilimin öncüleri arasında, modern yaşam koşulları üzerindeki etkisi bakımından, Faraday ile boy ölçüşebilecek bir başka ad kolayca gösterilemez. “Deneysel Bilimin Prensi” Faraday, bir ömüre sığmayacak sayıda önemli pek çok çalışma ortaya koydu: Kimya, elektro-kimya, metalürji alanlarında pratik sonuçlarından bugün de yararlandığımız deneyler yaptı. Maden ocaklarında kullanılan Davy lambasını geliştirmede katkıları oldu. Elektro-kimyadaki deneyleriyle kendi adıyla bilinen elektroliz yasalarına ulaştı.

Deneysel olarak, bir maddeden geçen belli miktarda elektrik akımının, o maddenin bileşenlerinde belli miktarda bir çözülüme yol açtığını gösterdi. Bu sonuç ilk elektrik sayaçlarının üretimine olanak verir. Faraday’ın bir başka önemli katkısı da “amper” denilen akım biriminin kesin tanımım vermiş olmasıdır. Elektrolizde geçen “elektrot”, “anot”, “katot”, “elektrolit”, “iyon” vb. terimleri de ona borçluyuz.

Faraday’ın yetişme koşullarına baktığımızda başarıları gözümüzde daha da büyümektedir.

Michael Faraday, Londra’da yoksul bir ailenin çocuğu olarak dünyaya gelmişti. Babası demirci, annesi ev hizmetçisiydi. Kısa süren öğreniminde okuma, yazma, bir miktar aritmetik öğrenmekle kalmıştı.

Henüz onüç yaşında iken bir kitapçının yanında çırak olarak çalışmaya başlamıştı. Ancak çok geçmeden kitap ciltleme becerisini kazanır. Bu iş ona yaşamının büyük fırsatını sağlar. Boş bulduğu zamanlarım kitap okumakla, ilgilendiği konularda not almakla dolduran Michael, ustasının sempati ve anlayışından da yararlanarak, eksik kalan eğitimini kendi kendine tamamlama çabası içine girer.

Daha sonra yazdığı anılarında, “O sıra okuduklarım arasında ilgimi en çok iki kitap çekmişti,” der. “Bunlardan biri elektrik konusunda bana ilk bilgileri sağlayan Britannica Ansiklopedisi, diğeri Jane Marcet’in Kimya Üzerine Söyleşiler adlı kitabıydı”. Bu kaynakların, onun düşünce yapısının kurulmasındaki önemi kesin, çünkü kimya ile elektrik yaşamı boyunca ilgilendiği başlıca iki konu olmuştur.

Faraday ondokuz yaşına geldiğinde, bilim merakı bir tutkuya dönüşmüş, kendi olanakları içinde ciddi deneylere bile koyulmuştu. 1812′de bir müşterinin sağladığı biletle, dönemin seçkin bilim adamı Sir Humphrey Davy’nin Kraliyet Enstitüsünde düzenlenen konferanslarına katılma olanağı bulur. Burada dinledikleriyle öğrenme tutkusu daha derinleşen Faraday’ın bilimden kopması olanaksızdı artık.

Konferansta tuttuğu notlarla deneyleri ilişkin şekilleri bir kitapta toplayarak asistanlık için Davy’ye başvurur. Davy’den beklediği yanıtı hemen alamazsa da ciltçilik işinde de daha fazla kalamazdı, artık! Kısa bir süre için de olsa Faraday işsiz kalmıştı, ama umutsuz değildi. Bir süre sonra şans yüzüne güler: Kraliyet Enstitüsü’nden uzaklaştırılan bir asistanın yerine bir başkası alınacaktır. Davy, daha önceki başvurusunu hatırlayarak, Faraday’ı göreve çağırır.

Genç araştırmacı çok geçmeden giriştiği deneyleriyle yeteneğini ispatlar. Daha işe başladığı ilk yıl içinde deney sonuçlarım yayımlamaya, Enstitü’de ders vermeye başlar. Bu arada yeni evlendiği eşine hazırladığı sürpriz de ilginçtir: Bir Noel sabahı Faraday eşini Kraliyet Enstitüsü’ne götürür.

Bayan Faraday kendisini bekleyen Noel armağanının merak ve heyecanı içindedir. Ama bulduğu yalnız kendisine değil tüm dünyaya verilen bir armağandır: elektrik akımıyla sürekli mekanik devinim sağlayan basit bir düzenek! Oyuncak trenlerden büyük elektrik lokomotiflerindeki makinalara değin bildiğimiz elektrik motorlarının ortaya konmuş ilk örneği.

Bilim çevrelerinde pek rastlanmayan bir hızla ün kazanan Faraday, 1823′te Kraliyet Bilim Akademisi üyeliğine seçilir; bir yıl sonra da çalıştığı enstitüde laboratuvar direktörlüğüne atanır.

Faraday enstitünün başına geçtikten sonra da deneylerini sürdürmekten geri kalmaz; “Faraday yasaları” diye bilinen ilişkileri ortaya koyar. Bunlardan en önemlisi, bir maddeden geçen elektrik miktarıyla o maddeden ayrılan bileşenlerin miktarı arasındaki ilişkidir. Bunun ortaya koyduğu bir sonuç atomların yalnızca belli miktarlarda elektrikle bağıntılı olduğu olayıdır ki, bilimsel açıklaması ancak yüzyılımızın başında Rutherford’un atomun yapısını belirlemesiyle verilebilmiştir.

Faraday elektro-kimya alanındaki çalışmasıyla yetinseydi bile bilim tarihinde önemli bir yeri olacaktı. Ama onu bilimin öncüleri arasına sokan asıl başarısı elektromanyetik konusundaki buluşlarıdır.

19. yüzyılın başlarına gelinceye dek elektriğe gizemli bir olay gözüyle bakılıyordu. Elektrik Benjamin Franklin için bir tür akışkandı. Kimisine göre ise, elektrik pozitif ve negatif olmak üzere iki değişik akışkandı. İlk kez Faraday elektriği bir “kuvvet” diye niteler. Elektrik gibi manyetizma da ilgi çeken, tartışılan bir konuydu; ama ikisi arasındaki ilişki henüz bilinmiyordu.

1820′de Danimarkalı bilim adamı Hans Oersted, elektrik akımı taşıyan bir telin yakınındaki bir pusula ibresini devindirdiğini saptamıştı. Bu gözlem pek çok deneylere, bu arada elektrik akımının manyetik etkilerine ilişkin Amper kuramına yol açar. Ancak bu konudaki asıl açıklama Faraday’ın mıknatısın elektriksel etkisini sezinlemesiyle gerçekleşir. Buna göre, bir tel bobinde oluşan manyetik etki, ikinci bir bobinde elektriksel etki olarak ortaya çıkmalıdır. “Elektromanyetik indüksiyon” denen bu olayı Faraday deneysel olarak 1831′de belirler.

Şekilde de görüldüğü üzere, ip ya da kumaş parçasıyla yalıtılmış demir bir halkanın karşıt yanlarına bakır telden iki bobin yerleştirilmiş olsun. Bobinlerden birinin uçları bir batarya ve şaltere, diğerinin uçları ise altında mıknatıslı bir ibre olan kuzey – güney doğrultusundaki bir tele bağlandığında, birinci bobinden elektrik akımının geçmesiyle mıknatıslı ibrenin devindiği görülür.

Bu, bir anlık olan akımın ikinci telde mıknatısın etkisiyle oluştuğu demektir. Oysa akım sürekli olursa ikinci telde öyle bir akım oluşmaz, ancak akım kesildiğinde mıknatıslı ibrenin bu kez ters yönde devindiği görülür. Bu da ikinci bobinde bir anlık ama tersine bir akımın oluştuğu demektir. Birinci bobinden geçen akım demir halkayı mıknatıslamakta, bu ise ikinci bobinde elektrik akımına yol açmaktadır.

Aynı ilişkiyi değişik deneylerle de ortaya koyan Faraday, bir başka deneyinde çok büyük bir mıknatısın kutupları arasında bir bakır disk döndürür. Diskin kenarlarıyla dingili arasındaki akımın sürekli olduğu görülür. Bu sonuçta da ilk basit dinamo örneğini bulmaktayız.

Faraday’a bilimde üstün konum sağlayan bir diğer önemli katkısı da bilime alan kavramını kazandırmış olmasıdır. Bu kavram yalnız elektromanyetik kuramın değil, Einstein’ın genel görecelik kuramının da içerdiği bir kavramdır.

Faraday’ı kavramı belirlemeye yönelten basit deneye bakalım: üzerinde demir kırıntıları olan bir kartı mıknatıs üstünde tutup hafifçe fiskelediğimizde kırıntıların mıknatısın kuzey -güney kutuplarını birleştiren birtakım çizgiler oluşturduğu görülür.

Faraday bu çizgilere, “manyetik güç çizgileri” demişti. Bu şekilde oluşan çizgiler, mıknatısı çevreleyen manyetik alanı temsil etmekte, çizgilerin yönü ise manyetik alanın yönünü göstermektedir. Ayrıca, çizgilerin biribirine yakınlığı manyetik alanın güçlü, çizgilerin biribirine uzaklığı manyetik alanın zayıf olduğu demektir.

Manyetik güç çizgilerinin bir devre tarafından kesilmesiyle elektrik akımının indükleneceğini belirten Faraday, uzayda da elektrik yüklü bir nesneyi çevreleyen manyetik güç çizgilerine benzer elektrik güç çizgilerinin olduğu kanısındaydı. Üstelik, elektrik güç çizgisinin bir pozitif yükten ona denk bir negatif yüke uzandığını düşünüyordu. Deneysel olarak da, bir tür elektrik indüklenirken, ona denk bir başka tür elektrik indüklenmesinin kaçınılmaz olduğunu göstermişti.

Örneğin, ipekle ovulan kuru bir cam parçası pozitif yük kazanır, elektrik güç çizgileri de camdan eşit negatif yük taşıyan çevresine uzanır.

Faraday bir atılım daha yaparak mıknatısın ışık üzerinde etki oluşturabileceği hipotezini ortaya koymuş, uzun deneylerden sonra ışığın gerçekten etkilendiğini kanıtlamıştı. Bilindiği gibi polarize ışık bir manyetik alan aracılığıyla döndürülebilmektedir. Ancak Faraday’ın belirlediği bu olguyu dönemin fizikçileri bir tür görmezlikten gelmişlerdi.

Faraday buluşlarının pratik sonuçlarıyla pek ilgilenmiyordu. Ama bu onun o sonuçların önemini kavramaktan uzak kaldığı demek değildi. Nitekim dönemin, başbakanı ona dinamonun ne işe yarayabileceğini sorduğunda, “Bilmiyorum, ama hükümetinizin bir gün ondan vergi sağlayabileceğini söyleyebilirim,” demişti.

Faraday’ın övgüye değer bir özelliği de bilimi halkın anlayacağı dil ve düzeyde yayma çabasıdır. Kraliyet Enstitüsü’nde halk için düzenlediği yıllık konferans ve dersler bugüne dek sürüp gelmektedir. Faraday büyük ilgi toplayan konferanslarından bir bölümünü yaşamının son yıllarında Mumun Kimyasal Tarihi adı altında bir kitapta toplayarak çocuklar için yayımlama yoluna bile gider.

Faraday’ın matematik bilgisi buluşlarını matematiksel olarak dile getirmek için yeterli değildi; ama nitel de olsa deney sonuçlarını açıklayan bir kuramı vardı. Bu kuramın matematiksel olarak işlenmesi geçen yüzyılın büyük fizik bilgini James Clerk Maxwell’i bekleyecektir.

 

Charles Darwın

(1809 -1882) Düşünce tarihinde pek az bilim adamı Darwin ölçüsünde tepki çekmiştir. Evrim kuramını içine sindiremeyenler onu hiç bir zaman bağışlamamışlardır. Yaşadığı dönemde, “Maymunla akrabalık bağın annen tarafından mı, baban tarafından mı?” diye alaya alınmıştı. Günümüzde ise daha ileri giden, onu bir “şarlatan”, dahası bir “şeytan” diye karalamak isteyen çevreler vardır.

Bir bilim adamına gösterilen bu tepkinin nedeni neydi? Darwin kimdir, ne yapmıştı?

Darwin küçük yaşında iken de horlanmıştı, hem de babası tarafından: “Seni, anlaşılan, ava çıkma, köpeklerle eğlenme ve fare yakalama dışında hiç bir şey ilgilendirmiyor. Geleceğin, kendin ve ailen için yüz karası olacaktır!”

Geleceğinin yüz karası olacağı söylenen çocuk, biyolojinin anıt yapıtı Türlerin Kökeni’nin yazarı, tüm çağların sayılı bilim adamlarından biri olur.

Varlıklı bir ailenin çocuğu olarak dünyaya gelen Charles Darwin, sekiz yaşına geldiğinde annesini yitirir. Çocuğunun iyi yetişmesi yolunda hiç bir şey esirgemeyen babası başarılı ve saygın bir hekimdi. Dedesi Erasmus Darwin, evrim konusuyla ilgilenen tanınmış bir doğa bilginiydi.

Entellektüel bir çevrede büyüyen Charles okulda parlak bir öğrenci değildi. Öğretmenleri arasında ona “aptal” gözüyle bakanlar bile vardı. Oysa bu bakış, yüzeysel bir izlenimi yansıtmaktaydı; sıkıntı Charles’ın okul programıyla bağdaşmayan kendine özgü ilgilerinden kaynaklanıyordu. Hayvanlara, özellikle böceklere derin bir ilgisi vardı. Daha küçük yaşında onu saran bu ilgi, ilerde belirginlik kazanan üstün gözlemleme yeteneğinin itici gücüydü.

Üniversitede, ilk iki yılını alan tıp öğrenimi başarısız geçer. Dönemin tartışma konuları arasında onu yalnızca canlıların kökeni sorunu ilgilendirmekteydi. Ama babası umudunu tümüyle yitirmek istemiyordu; hekim olmak istemeyen oğlunu hiç değilse din adamı olmaya ikna eder.

Edinburg’dan Cambridge Üniversitesine geçen delikanlı burada da, teoloji öğreniminin yanı sıra böcek toplama etkinliğini sürdürür; oluşturduğu zengin koleksiyonla bilim çevrelerinin beğenisini kazanır. Bu arada botanik ve jeoloji derslerini de izlemekten geri kalmaz.

Yirmi iki yaşında üniversiteyi bitirir, ama kilisede görev almaya yönelik değildir. Bir rastlantı, aradığı olanak kapısını ona açar. Güney Amerika kıyılarından başlayarak uzun süreli bir araştırma gezisine çıkmaya hazırlanan kraliyet gemisi Beagle’e doğa araştırmacısı aranmaktaydı. Botanik profesörünün tavsiyesi üzerine Darwin’e, masraflarını kendisinin karşılaması koşuluyla, bu görev verilir. Ancak genç bilim adamının babasının desteğini sağlaması kolay olmaz.

1831′de başlayan geziye Darwin beş yıl süren yoğun ve çetin bir uğraşla, dünyanın henüz bilinmeyen pek çok kıyı ve adalarında türlere ilişkin fosil ve örnekler toplar; gözlemsel bilgiler edinir, notlar alır. Doğa onun için tükenmez bir laboratuvardı. Özellikle Gallapagus adalarındaki dev kaplumbağalar ile kuşlar üzerindeki gözlemleri, değişik çevre koşullarında türlerin nasıl oluştuğu konusunda ona önemli ipuçları sağlamıştı. Kimi türlerin çevreyle uyum kurarak sürdürdüğü, kimi türlerin ise değişen koşullarda uyumsuzluğa düşerek yok olduğu izlenimi kaçınılmazdı.

Ülkesine döndüğünde Darwin’in yapması gereken şey, topladığı bilgileri işlemek, evrim olgusuna kanıtlara dayalı açıklık getirmekti. Ne var ki, bu kolay olmayacaktı. Bir kez toplanan gözlem verilerinin düzenlenmesi bile yıllar alacak bir işti. Sonra, evrim konusu dikenli bir sorundu; yerleşik önyargılara ters düşmek kolayca göze alınamazdı.

Darwin incelemelerinden türlerin sabit olmadığını, uzun süreli de olsa, çevre koşullarına göre değiştiğini öğrenmişti. Ama “evrim” denen bu değişimin düzeneği neydi? Bu soruya yanıt arayışı içinde olan Darwin’e 1838′de okuduğu bir kitap ışık tutar. Thomas Malthus’un yazdığı Nüfus Üzerine Deneme adlı bu kitap ilginç bir tez ortaya koyuyordu: canlılar için yaşam bir var olma ya da yok olma savaşımıdır; çünkü, hemen her çevrede, nüfus artışı beslenme olanaklarını kat kat aşmaktadır. Bu savaşımda güçlüler karşısında zayıf kalanlar yok olup gider; çevresiyle uyumsuzluğa düşenler elenirken, uyum kuranlar çoğalır.

19. yüzyılın acımasız kapitalizminin “laissez faire et laissez passer” (bırakınız yapsınlar, bırakınız geçsinler) sloganında da yansıyan bu düşünce, Darwin’in yirmi yıl sonra açıkladığı evrim kuramının özünü oluşturur: doğal seleksiyon evrimin itici gücü, ilerlemenin dayandığı düzenekti.

Evrim düşüncesi, insanın kendi varlık kökenini bilme merakını da içermektedir. İlkel topluluklarda bile kendini açığa vuran bu merakın özellikle mitoloji ve dinlerin oluşumundaki rolü yadsınamaz. Ancak bilim öncesi açıklamalar masalımsı birer öğreti niteliğindedir. Her şey gibi insan da Tanrısal gücün ürünüdür. Gelişmiş dinlerde bile evrim düşüncesi yer almamıştır.

Evrimden ilk söz edenler, M. Ö. 6. yüzyılda yaşayan İyonya’lı filozoflar olmuştur. Thales tüm nesneler gibi canlıların da sudan oluştuğu savındaydı. Daha çarpıcı görüşü onu izleyen Anaximander’de bulmaktayız: “Canlıların kaynağı denizdir. Başlangıçta balık olan atalarımızdan bugünkü formumuza evrimleşerek ulaştık. ” Gene o dönemin bir başka filozofu, Herakleitus, canlıların gelişmesinde aralarındaki çatışmanın rolüne değinir. Bunlardan ikiyüz yıl sonra gelen antik çağın ünlü filozofu Aristoteles’te evrim düşüncesi daha belirgindir. Onun görüşünde aşağıdaki ilginç noktaları bulmaktayız:

(1)  Canlıların en ilkel düzeyde kendiliğinden oluştuğu,

(2)  Organizmaların basitten daha karmaşık formlara doğru geliştiği,

(3)  Canlıda organların ihtiyaca göre oluştuğu.

Ancak ortaçağ teolojisinde bu tür düşüncelere yer yoktu. Gerçek kutsal kitaplarda açıklanmıştı. Evrim düşüncesi bir sapıklıktı.

Evrime bilimsel yaklaşım, Aydınlık Çağı’nın sağladığı göreceli özgür düşünme ortamını bekler. Bu alanda ilk adımı Fransız doğa bilimcisi Buffon’un attığı söylenebilir. Buffon, canlıların sınıflanmasına ilişkin Aristoteles sistemini düzeltme ve geliştirme amacıyla çalışmaya koyulur. İlgilendiği konuların başında evrim geliyordu. Fosil ve diğer kanıtlara dayanarak canlı türlerin evrimle oluştuğu görüşüne ulaşmıştı. Ama kilisenin sert tepkisiyle karşılaşınca, Buffon, “Kutsal kitapta bildirilenlere ters düşen sözlerimi geri alıyorum” diyerek sessizliğe gömülür.

Ünlü isveç botanikçisi Linnaeus’un modern sınıflama yöntemine ilişkin çalışması evrim düşüncesine destek sağlayan başka bir girişimdir. Darwin’in dedesi Erasmus Darwin de, Buffon gibi, canlıların yaşam dönemlerinde edindikleri beceri veya özelliklerin yeni kuşaklara geçmesiyle evrimleştiği görüşündeydi.

Bu görüşü geliştiren Fransız doğa bilgini Lamarck ise evrim konusunda oldukça tutarlı ilk kuramı oluşturur. Kısaca, “canlıların yaşam dönemlerinde kazandıkları özelliklerin ya da uğradıkları değişikliklerin (bunlar çevre koşullarının etkisinde ortaya çıkabileceği gibi, organların kullanış veya kullanışsızlık nedeniylede olabilir) kalıtsal yoldan yeni kuşaklara geçtiği” diye özetleyebileceğimiz bu kuram, sağduyuya yatkın görünmesine karşın, bilim dünyasında beklenen ilgiyi bulmaz.

Kuramın olgusal içerik yönünden yetersizliği bir yana, bilinen kimi gözlemsel verilere ters düşmesi benimsenmesine olanak vermiyordu. Açıklama gücünü bugün de koruyan, daha kapsamlı ve tutarlı evrim kuramını Darwin’e borçluyuz. 1859′da yayımlanan Türlerin Kökeni adlı yapıtta ortaya konan bu kuramın benimsenmesine ortam hazırdı. Kısa sürede bir kaç yeni basım yapan kitap, insanlığın dünya anlayışında eşine pek rastlanmayan köklü bir devrime kapı açmaktaydı.

Dönemin seçkin bilginlerinden T. H. Huxley’in şu sözlerinin çağdaşı pek çok bilim adamının duygularını dile getirdiği söylenebilir: Biz türlerin oluşumuna ilişkin, doğruluğu olgusal olarak yoklanabilir bir açıklama arayışı içindeydik. Aradığımızı Türlerin Kökeni’nde bulduk. Kutsal kitabın masalımsı açıklaması geçerli olamazdı. Bilimsel görünen diğer açıklamaları da yeterli bulamıyorduk. Darwin kuramı her yönüyle bilimsel yeterlikte idi.

Kuramın dayandığı iki temel nokta vardır:

(1)  Canlı dünyada, yeni türlerin oluşumuna yol açan sürekli ama yavaş giden değişim;

(2)      “Doğal seleksiyon” dediğimiz evrim sürecini işler kılan düzenek.

Birinci nokta, türlerin sabitliği varsayımını içeren yerleşik öğretiye ters düşmekteydi. İkinci nokta, evrimin tüm ereksel görünümüne karşın salt mekanik terimlerle açıklanabileceğini göstermekteydi.

Darwin kuramının özünü oluşturan doğal seleksiyon, başlangıçtan günümüze değin, değişik eleştirilere uğramıştır. Bu nedenle, ilkenin öncelikle açıklığa kavuşturulması gerekir. Darwin’in evrim kuramı, gözlenebilir üç olgu ve iki ilke içerir.

İlk olgu, üreme biçimleri ne olursa olsun, canlıların geometrik diziyle çoğalma eğilimidir.

İkinci olgu, bu eğilime karşın türlerde nüfusun aşağı yukarı sabit kaldığıdır. Bu iki olgudan, Darwin ‘yaşam savaşımı’ ilkesine ulaşır.

Üçüncü olgu, canlıların (bir türü hatta bir aileyi oluşturan bireylerin bile) az ya da çok belirgin farklılıklar sergilemesidir. Yaşam savaşımı ilkesiyle birleşen bu olgu Darwin’i temel ilkesi olan doğal seleksiyon düşüncesine götürür. Belli bir çevrede farklı özellikler taşıyan bireyler arasında yaşam savaşımı varsa, doğal koşullara uyum bakımından, özellikleri üstünlük sağlayan bireylerin (veya türlerin) egemenlik kurması, diğerlerinin elenmesi kaçınılmazdır.

Evrim sürecinin dayandığı bu düzeneğe, tüm eleştiri ve uğraşlara karşın, daha geçerli diyebileceğimiz bir alternatif bulunamamıştır. Ayrıntılarında kimi değişikliklere uğramakla birlikte, kuramın sürgit Darwinci kalmayacağını gösteren herhangi bir belirti yoktur ortada!

Newton, yerçekimi ilkesiyle devinim yasalarının, yersel ya da göksel, tüm nesneler için geçerli genellemeler olduğunu göstermişti. Darwin de yaşam savaşımı, doğal seleksiyon, çevreye uyum gibi bir kaç ilke içeren kuramıyla evrim olgusuna bilimsel açıklama getirdi; insanın ottan çiçeğe, amipten maymuna uzanan canlı dünyanın bir parçası olduğunu gösterdi.

 

LouIs Pasteur

(1822 -1895) Bilim tarihinde pek az bilim adamı Louis Pasteur ölçüsünde insan yaşamım doğrudan etkileyen buluşlar ortaya koymuştur. Günlük dilimize bile geçen “pastörizasyon” terimi onun buluşlarından yalnızca birini dile getirmektedir.

Kristaller üzerindeki kuramsal çalışmalarının yanı sıra kimi hastalıklara bağışıklık sağlama yolundaki çalışmaları, bu arada özellikle “şarbon” (ya da antraks) denilen koyun ve sığırlarda görülen bulaşıcı hastalıkla kuduza karşı geliştirdiği aşı yöntemi ona dünya çapında ün kazandırmıştır. Bugün Fransa’da pek çok bulvar ve alan onun adını taşımaktadır. Kendi kurduğu “Pasteur Enstitüsü” dünyanın önde gelen araştırma merkezlerinden biridir. Fransızların gözünde Pasteur ulusal bir kahramansa, bunun nedeni onun yalnızca büyük bir bilim adamı olması değil, aynı zamanda, yaşamı boyunca ortaya koyduğu özveri ve insanlığa hizmet tutkusuydu.

Louis, Fransız Devrimiyle özgürlüğüne kavuşan bir kölenin torunuydu. Babası, Napolyon ordusunda üstün atılım gücüyle “Legion de Honour” alan bir ast-subâydı. Baba Pasteur’ün, Napolyon’un düşmesiyle ordudan ayrılmasına karşın İmparator’un anısına beslediği derin bağlılık duygusu, ilerde oğlu Louis’in olağan üstü direnç ve yeteneklerim de yönlendiren katıksız yurtseverliğe dönüşmüştü.

Geçimini dericilikle sağlayan Pasteur ailesi yoksuldu, ama çocuklarının eğitimi için her türlü sıkıntıyı göze almıştı. Louis daha küçük yaşlarında güçlükleri göğüslemede sergilediği direnç ve istenç gücüyle dikkatleri çekiyor, coşkuyla başladığı okul öğreniminde kendisiyle birlikte kardeşlerinin de başarılı olması için uğraş veriyordu.

Gerçi okulda pek parlak bir öğrenci değildi; dahası, ilk gençlik yıllarında ilerde büyük bilim adamı olacağını gösteren bir belirti de yoktu ortada. Tam tersine, Louis’in belirgin merakı portre çizmekti. Üstün bir yeteneği yansıtan tabloları, bugün de, Pasteur Enstitüsünde asılı durmaktadır.

Louis 19 yaşma geldiğinde sanatı bırakır, bilime yönelir. Başlangıçta öğretmenlerinin yönlendirmesiyle öğretmen olmaya karar verir, ünlü eğitim enstitüsü Ecole Normale Superieure’e başvurur. Giriş sınavını kazanmasına karşın, matematik, fizik ve kimyada derslere daha hazırlıklı başlamak için öğrenimine bir yıl sonra başlar.

Amacı iyi bir öğretmen olarak yetişmekti. Ne var ki, öğrenimini tamamladığında tüm ilgi ve coşkusunun bilimsel araştırmaya yönelik olduğunu fark eder. Kristaller üzerindeki ilk çalışmaları onu bir tür büyülemişti. Öğrencisinin özgün düşünme ve kavrayış gücünü sezen kimya profesörü onu, basit araçlarla yeni kurduğu laboratuvarına araştırma asistanı olarak alır. Bu genç bilim adamının hayal bile edemediği bir fırsattı.

Pasteur hemen çalışmaya koyulur, ilk aşamada tartarik asit kristalleri üzerindeki optik deneylerini yoğunlaştırır. Çok geçmeden bilim çevrelerinin dikkatim çeken buluşları, kimi tanınmış bilim adamlarının teşvikiyle Fransız Bilimler Akademisine sunulur.

Pasteur bilim dünyasınca tanınma yolundadır, ama Eğitim Bakanlığı onu bir ortaokula öğretmen olarak atamakta ısrarlıdır. Akademinin ve kimi bilim adamlarının giderek artan baskısına daha fazla karşı koyamayan Bakanlık bir yıl sonra Pasteur’ün Strasburg Üniversitesi’ne yardımcı profesör olarak dönmesine izin verir.

Pasteur’ün bir özelliği de kararlı olması, duraksamalarla vakit öldürmemesiydi. Üniversiteye gelişinin daha ilk haftasında Rektöre kızıyla evlenmek istediğini bildirir. Başvuru mektubu ilginçtir:

Saklamama gerek yok, tümüyle yoksul bir kimseyim. Tek varlığım sağlığım, yürekliliğim ve üniversitedeki isimdir. . . . Geleceğim, şimdiki eğilimim değişmezse, kimyasal araştırmalara adanmış olacaktır. Çalışmalarımdan beklediğim sonucu alırsam, ilerde Paris’e yerleşmeyi düşünüyorum.

İsteğimi olumlu bulursanız, resmi evlenme önerisi için babam hemen Strasburg’a gelecektir. İstek olumlu karşılandı. Pasteur yaşamı boyunca tüm bilimsel çalışmalarında kendisine destek veren, tutku ve sorunlarını paylaşan Marie Laurent’le 1849′da yaşamını birleştirir.

Bayan Pasteur gerçekten özveri ve sevgi bağlılığıyla olağan üstü bir eşti. Mutlu evlilik ne yazık ki, yıllar sonra trajik bir dönemden geçer: Pasteurler dört çocuklarından üçünü küçük yaşlarında tifo ve benzer hastalıklar nedeniyle yitirirler. Geriye kalan oğulları yirmi yaşında iken 1871 savaşında Almanlara esir düşer.

Pasteur bilimsel çalışmalarını bir yana iterek eşiyle birlikte oğlunun dönüşünü bekler; Fransa’nın yenilgisiyle birlikte cepheden kaçan binlerce genç arasında oğlunu aramaya koyulur. Sonunda bulunduğunda oğlan bitkin ve ağır yaralıydı. Pasteur Almanları hiç bir zaman bağışlamadı; öyle ki, yıllar sonra bilimsel başarıları için Alman hükümetinin önerdiği madalyayı kabul etmedi.

Şimdi Pasteur’ü bilimin öncüleri arasına yükselten bilimsel çalışmalarına değinelim. Pasteur’ün yaşamımızı bugün de etkileyen buluşlarından biri fermentasyon (mayalanma) olgusuna ilişkindir. “Fermentasyon” terimi bilindiği gibi kimi maddelerde oluşan bir değişiklik sürecini dile getirmektedir. Örneğin şarap üzümden bu işlemle elde edilir; istenirse gene bu işlemle sirkeye dönüştürülebilir. Aynı şekilde, sütün şekeri laktik aside dönüştüğünde süt ekşir. Yumurta ve et türünden maddeler de fermentasyonla bozularak yenmez hale gelebilir.

Üretimi fermentasyona dayanan şarap Fransa’da çok önemli bir konuydu. Ne var ki, bu işlemin güvenilir teknolojisi henüz yeterince bilinmiyordu. Göreneklere bağlı yöntemler her zaman istenen sonucu vermiyor, kimi zaman şarap yerine sirke ya da kullanıma elvermeyen bozuk bir sıvı elde ediliyordu.

Sorunu ilk kez Pasteur bilimsel olarak incelemeye koyulur: sonunda ulaştığı açıklama (fermentasyonun mikrop teorisi) geçerliğini bugün de korumaktadır. Buna göre, doğada organik maddelerdeki hemen tüm değişiklikler gözle görülemeyen birtakım küçük canlılar tarafından oluşturulmaktadır.

Pasteur bu mikroorganizmaların ısıyla kontrol altına alınabileceğini göstererek şarap üretimim sağlam bir yöntemle güvenilir kılmakla kalmaz, “pastörizasyon” dediğimiz işlemle modern süt endüstrisine de yol açar.

Pasteur’ün önemli bir başka çalışması da ipekçiliği büyük bir sıkıntıdan kurtarmasıdır. Hastalıklı ipek böcekleri, üreticileri sık sık büyük kayıplara uğratıyordu. Soruna çözüm bulması mikrop teorisiyle ünlenen Pasteur’den istenir. Bilim adamı her zamanki yoğun ve dikkatli yaklaşımıyla sorunu değişik boyutlarıyla inceler; sağlıklı ipek böceği yumurtalarını seçmede “pratik” diyebileceğimiz bir yöntem oluşturarak ipekçiliği güvenilir bir üretim teknolojisine kavuşturur.

Pasteur’ün başarıları bir tür zincirleme tepki içinde biribirine yol açmaktaydı. Kristaller üzerindeki çalışmaları onu canlı yaşamın gizemi sorununa götürmüştü. Canlılar üzerindeki incelemeleri ise onu fermentasyonu açıklayan mikrop teorisine ulaştırmıştı. Doğruluğundan artık kimsenin kuşku duymadığı bu teori başlangıçta tepkiyle karşılanmıştı: pek çok kimse için öyle bir düşünce uydurma bir açıklama olmaktan ileri geçemezdi.

“Spontane üreme” diye bilinen yerleşik görüşe göre kurtçuk, tırtıl, tenya, sinek, fare vb. yaratıklar elverişli koşullarda kendiliğinden oluşmaktaydı. Oysa Pasteur “kendiliğinden oluşumu” mikroskopik organizmalar için bile olanaksız görüyordu.

Mikrop teorisinin özellikle bulaşıcı hastalıkların denetim altına alınması yolunda yeni araştırmalara yol açması kaçınılmazdı. Pasteur çok geçmeden şarbonun yanı sıra kangren, kan zehirlemesi, loğusa humması vb. hastalıklar üzerinde de araştırmaların yoğunlaştırır. Onun çarpıcı bir başarısı da kuduza karşı oluşturduğu aşıdır. Kuduz özellikle köpeklerin taşıdığı ölümcül bir hastalıktır.

Pasteur’e gelinceye dek kuduza karşı bilinen tek çare ışınları yerin kızgın bir demirle derinlemesine dağlanmasıydı. Kaldı ki, gecikme halinde bu yöntemin, hastanın canını yakma dışında bir etkisi olmadığı da biliniyordu.

Pasteur hayvanlar üzerinde denediği ama insanlara henüz uygulamadığı aşısıyla dokuz yaşındaki bir çocuğun yaşamım kurtarır. Azgın bir köpeğin ondört yerinden ısırdığı çocuğa kızgın demir uygulaması yapılamazdı. Umutsuz annenin çırpınışına dayanamayan Pasteur aşısını ilk kez bu çocukta denemekten kendini alamaz. Sonuç çocuk için kurtuluş, gelecek kuşaklar için bir müjde olur. Büyük bilim adamı ölümünden önce yaşam felsefesini şöyle özetlemişti:

Hiç kuşkum yok ki, Bilim ve Barış cehalet ve savaşı yok edecektir. Ulusların yıkmak, yok etmek için değil, yaşamı yüceltmek için birleşeceğine, geleceğimizi bu yolda, uğraş verenlere borçlu olacağımıza inanıyorum.

Pasteur’ün öyküsünde, anlamlı bir yaşam arayışındaki her genç için, çarpıcı ve güzel bir örnek vardır.

 

Johann Gregor Mendel

Johann Gregor Mendel (1822-1884) Çek Cumhuriyetinden; genetik biliminin kurucusu, Avusturyalı botanik bilgini ve rahiptir.

Kalıtım biliminin öncüsü botanikçi, bitkiler üzerine yaptığı çalışmalarda, bir türün özelliklerinin kalıtım yoluyla sonraki kuşaklara aktarıldığını bulmuştur. Mendel’in öne sürdüğü ilkeler, 20. yüzyılın başlarında yapılan deneylerle doğrulandıktan sonra, kalıtım kuramının bütün canlılar için geçerliliği saptanarak, biyolojinin temel ilkelerinden biri haline gelmiştir.

Küçük yaşlarda bahçe işleriyle uğraşmaya başlayan Mendel, üniversite öğreniminden sonra bir din adamı olarak Moravya‘da yaşamını sürdürdü. Bu arada bitkiler üzerinde pek başarıya ulaşamayan bazı incelemelerde bulundu.

1854′te Brünn’e dönerek bir teknik lisede öğretmenlik yapmaya başladı. Daha öncede öğretmenlik sınavlarına girmiş ancak başarılı olamamıştı. 19. yy. ortalarında Darwin‘in doğal ayıklanma kuramının yayıldığı sıralarda canlı bir türün özelliklerinin kendisini izleyen döllere nasıl aktarabildiği sorunu yeni bir yoğunlukla ortaya çıkmıştı.

Biyoloji bilginleri özellikle bitkibilimciler harcadıkları çabalara karşın bu sorunu aydınlatamıyorlardı. Daha sonraları genetiğin babası olarak kabul edilecek Mendel, aynı sorunla ilgili deneylere 1858’de başladı ve araştırmalarının ancak 8 yıl sonra sonuca ulaştırabildi. Başarısı, incelediği konuya elverişli olan yönteminden kaynaklandı. Mendel bir yandan farkların az ve son derece belirgin olduğu bitki çeşitlerini (dev ya da cüce, düz ya da kırışık bezelyeler) ayırmayı öte yandan aktarılan özelliklere göre sayısal ilişkileri araştırmada istatistiğin henüz yerleşmiş bir bilim dalı olmadığı bir dönemde istatistik yöntemini benimsemeyi bildi.

Bezelyelerle yaptığı deneylerde bitkinin uzun boylu ya da cüce, çiçeklerin ve yaprak koltuklarının renkli ya da renksiz, tohumlarının sarı ya da yeşil, düzgün ya da buruşuk olması gibi karşıt özelliklerden birini kuşaklar boyu taşıyan saf soylar elde etmeyi başardı. Ardından bunları kendi aralarında çaprazladı. Sonuçta gözle görülür ölçüde belirgin olan bu iki seçenekli özelliklerin saf soylar ile melez döllerde temel kalıtım birimleri aracılığıyla ortaya çıktığını ve her özellik için bir çift genin bulunduğunu öne sürdü.

Mendel tüm bunları basit istatistiklerle değerlendirdi. Bu Mendel yasaların temel ilkesi melez döllerin üreme hücrelerinde yarısı anadan yarısı babadan alınmış kalıtım birimlerinin bulunmasıdır.

“Bilim adamı” deyince çoğumuzun gözünde laboratuvarda deneylerine gömülmüş, ak önlüklü, gözlüklü biri canlanır. Oysa bilimin öncüleri arasında çalışmasını kum üzerinde (Arşimet), eğik kulede (Galileo), çiftlikte (Newton), doğa araştırma gemisinde (Darwin), patent bürosunda (Einstein) yapanları biliyoruz. Bilim düşünsel bir etkinliktir; yeri laboratuvarla değil, zekâ, imgelem ve istenç gücüyle sınırlıdır. Bunun çarpıcı bir örneğini çalışmalarını aralıksız yirmi yıl manastır bahçesinde sürdüren keşiş Mendel vermiştir.

Genetik biliminin kurucusu Gregor Mendel, Avusturya imparatorluğuna dahil Çekoslavakya’da yoksul bir köylü çocuğu olarak dünyaya gelir. O zaman kırsal kesimde hâlâ bir tür derebeylik düzeni egemendi. Topraksız köylüler için boğaz tokluğuna ırgatlık dışında fazla bir seçenek yoktu; tek kurtuluş yolu belki de eğitimdi.

Ne var ki, eğitim de çoğunluk ilkokulla sınırlı kalmaktaydı; daha ilerisi için halkın parasal gücü yoktu. Herkes gibi Gregor’un da doğuştan alın yazısı babası gibi rençber olmaktı. Ama hayır, bu çocuk düzenin koyduğu engeli aşacak, kendine özgü kararlılık içinde yeteneğini ortaya koyacaktı. İlkokuldaki başarısı göz kamaştırıcıydı. Öğretmenlerinin ısrarı üzerine aile, sonunda çocuğun orta öğrenimi için izin verir. Gregor, evinden uzakta altı yıl bir yurtta yetersiz bakım ve beslenme koşullarına göğüs gererek okur; ama, acısını uzun yıllar çekeceği yorgun, cılız ve sağlıksız bir bedenle mezun olur.

Mendel daha öğrencilik yıllarında bilimin büyüsüne kendini kaptırmış; özellikle botanik yoğun ilgi alam olmuştu. Fakat yüksek öğrenim onun için ulaşılması güç bir hayâldi. Burs olanağı yoktu; kız kardeşinin bağışladığı çeyizi de yeterli olmaktan uzaktı. Mendel için bir tek yol vardı: Bir katolik manastırına girmek. Avusturya’da botanik müzesi, bahçe bitkileri ve zengin kitaplığıyla ünlü Brünn Manastırı Mendel için “ideal” bir öğrenim merkeziydi.

Yirmibeş yaşında “papaz” unvanını alan Mendel’in asıl özlemi hiç değilse bir ortaokulda öğretmen olmak, araştırmaları için daha elverişli bir ortam bulmaktı. Bu amaçla girdiği sınavda yeterli görülmez. Üniversite öğreniminden yoksun kalmış olması önemli bir handikaptı. Genç papaz umudunu yitirmemiştir.

Viyana Üniversitesi’nde dört sömestr fizik ve doğal tarih öğrenimi gördükten sonra şansını yeniden dener. Ama yine başarılı görülmez. Sınav kurulu önyargılıdır; kendine özgü değişik bir tutum sergileyen genci anlamaktan uzak kalır. Adayın özellikle evrim ve kalıtıma ilişkin görüşleri bağışlanır gibi değildi. Mendel için artık manastıra çekilip araştırmalarını bahçe bitkileri üzerinde sürdürmekten başka çare kalmamıştı.

Canlılarda özelliklerin kuşaktan kuşağa geçişi, Mendel’in sürgit ilgi odağını oluşturan konuydu. Herkes yeni doğan bir yavrunun atalarının özelliklerini taşıdığını biliyordu. Dahası, kimi yavrunun daha çok anaya, kimi yavrunun da daha çok babaya çektiği gözden kaçmıyordu. Ancak bilinen bu olayların “bilimsel” diyebileceğimiz bir açıklaması yoktu ortada.

Mendel bezelyeler üzerindeki deneylerine öyle bir açıklama bulmak için koyulmuştu. Çalışmasını, bu amaçla seçtiği 22 çeşit bezelyenin boylu-bodur, sarı-yeşil, yuvarlak-buruşuk,. . . gibi 7 çift karşıt özellikleri üzerinde yoğunlaştırır.

Örneğin, boylu ve bodur çeşitlerim çapraz döllediğinde ilk kuşak melez ürünün tümüyle boylu olduğunu saptar. Melez ürünü kendi içinde dölleyerek elde ettiği ikinci kuşak ürünün büyük bir bölümünün boylu, küçük bir bölümünün ise bodur olduğu görülür (aşağıdaki şekile bakınız!). Mendel iki çeşit arasındaki oranı hesaplar: 1064 bitkinin yaklaşık 3/4′ü boylu, 1/4′ü bodurdur. Örneklem büyüklüğünden kaynaklanan olası hatayı göz önüne alan Mendel, oranı 3:1 olarak belirler (Boylu faktörü B, Bodur faktörü b ile gösterilmiştir).


Şekilde belirlenen durumun iyi anlaşılması için birkaç noktanın açıklık kazanması gerekir:

(1)  Döllenmede boylu ve bodur bezelyelerin hangisinin dişi, hangisinin erkek olduğu, sonucu etkilememektedir. Başka bir deyişle özelliğin belirlenmesinde boylu erkek, bodur dişi çift ile bodur erkek, boylu dişi çifti eşdeğerdir.

(2)  Dişi ya da erkek her canlı her özellik için biri başat, diğeri çekinik iki faktör taşır. Bezelye örneğinde, ilk kuşaktaki Bb melezinde ortaya çıkan B başattır, gizli kalan b çekiniktir.

(3)  Dişi ve erkekte her üreme hücresi faktörlerden yalnızca birini taşır; öyle ki, her yavru iki faktörle dünyaya gelir. Kuramın bu temel ilkesine “Mendel’in ayırım yasası” denmiştir.

(4)   İlk kuşaktaki melez (Bb) yavruların tümüyle boylu olması, faktörlerin döllenmede kaynaşmadığı, başat ya da çekinik her faktörün bireysel kimliğini koruduğunu gösterir. Nitekim ikinci kuşakta faktörlerin BB, Bb, bB ve bb olarak çıktığını görüyoruz.

“Mendel’in bağımsız çeşitler” diye bilinen bu yasası yavruların kimi kez ana ve babaya değil, geçmişteki atalarına benzeme olayım da açıklamaktadır. Şöyle ki, kuşaktan kuşağa gizil kalan çekinik faktörlerin birbiriyle birleşip ortaya çıkma olanağı vardır. Aynı şekilde yavrunun ana babadan birine daha çok benzemesi de başat ve çekinik faktörlerle açıklanan bir olaydır (Bağımsız çeşitler yasasını kısaca şöyle dile getirebiliriz: Döllenmede iki cinsiyetin her birinden gelen tek faktörler birbiriyle bağımsız ve rastgele birleşirler).

Mendel başka bitkiler üzerinde yaptığı deneylerden de aynı sonucu almıştır. Daha sonra, biyologların böcek, balık, kuş ve memeliler üzerinde yürüttükleri deneyler de onun genetik teorisini doğrulamıştır.

Mendel teorisi, evrim kuramının başlangıçta açıklamasız bıraktığı kimi önemli noktalara da ışık tutmuştur. Evrimi doğal seleksiyonla açıklayan Darwin de herkes gibi ana-baba özelliklerinin yavruda bir tür kaynaştığını varsayıyordu. Oysa bu doğru olsaydı, doğal seleksiyonla üstünlük kazanan özelliklerin kuşaklar boyu zayıflama sürecine girmesi gerekirdi.

Örneğin, çok hızlı koşan bireyle koşma hızı normal bireyin çiftleşmesinden doğan bireyin (yavru) koşma hızı ikisi arasında olacak, sonraki kuşaklarda fark daha da azalarak kaybolmaya yüz tutacaktır. Darwin de bunun böyle olmadığının farkındaydı. Kaynaşma varsayımı ne kimi yavruların ana babadan yalnızca birine benzemesi olayıyla, ne de ara sıra görüldüğü gibi, beklenmedik bir özellikle dünyaya gelme olayıyla bağdaşmaktaydı. Özelliklerin önceki kuşak veya kuşaklardan olduğu gibi ve ayrı birimler olarak yavruya geçtiği düşüncesi, Mendel kuramının getirdiği bir açıklamadır.

Mendel, kuramını 1865′te bilim çevrelerine sunmuştu. Ancak Mendel hayatta iken ilgi çekmeyen kuramın önemi, otuz beş yıl sonra kavranır. Hugo de Vries ve Weismann gibi bilim adamlarının çalışmaları olmasaydı Mendel’in devrimsel atılımı belki de daha uzun süre gün ışığına çıkmayacaktı.

Genetik teorisi, evrim kuramına yeni bir boyut kazandırmakla kalmamış, günümüzde olumlu olumsuz çokça sözü edilen “genetik mühendisliği” denen bir çalışmaya da yol açmıştır.

 

 

Lord KelvIn

William Thomson (Lord Kelvin) (1824-1907) öldü. İskoçyalı fizikçi. William Thomson, daha onbir yaşındayken babasının matematik profesörü olduğu Glasgow Üniversitesi’nde öğrenime başladı; sonra Cambridge Üniversitesi’ne devam etti. Fourier‘den etkilenen Kelvin, 16 ve 17 yaşında iken yayımladığı ilk bilimsel makalelerinde, İngiliz bilim adamlarının genellikle karşı çıktığı Fourier‘in görüşlerinin savunusunu üstlendi ve Fourier’in geliştirdiği bilimsel yöntemlerin yalnızca ısı akışına değil, başka enerji biçimlerine de uygulanabileceğini öne süren ilk bilim adamı oldu. 21 yaşında Glasgow Üniversitesi’nde fizik profesörü oldu. Ve aralıksız elli üç yıl bu görevi sürdürdü.

William Thomson, özellikle ısı ve elektrikle ilgili incelemeler yaptı. Basınç altında buzun erime noktasındaki değişimleri belirledi ve 1852‘de gazların genleşmesinin soğumaya yol açtığını ortaya koydu. Joule ile görüştükten sonra, Kelvin ölçeği olarak adlandırılan ve günümüzde bütün bilimsel sıcaklık ölçümlerinin temelini oluşturan mutlak termodinamik sıcaklık ölçeği düşüncesini ortaya attı. Elektriksel Görüntüler Metodu’nu bularak, elekrostatiğin matematik teorisine katkıda bulundu. 1854‘ten başlayarak denizaltı telgrafı ile ilgilendi. George Gabriel Stokes ile birlikte, elektrik sinyal iletimine ilişkin matematiği geliştirdi.

Denizcilikte pek çok teknik probleme çözümlemeler getiren bir takım çalışmalarda da bulundu. Elektrik standartlarını kurmada öncülük yapan Kelvin, Leiden şişesinden boşalan elektriğin titreşimsel niteliğini belirlemiş olması, Hertz‘in elektro-manyetik dalgalarını, dolaysıyla Marconi‘nin radyoyu bulmasına yol açmıştır. ayrıca yerin, ayın ve güneşin kasılması üstünde çalışmalar yaptı. 1876‘da diferansiyel denklemlerin mekanik çözümüne imkan veren ilk integral alma düzeneğini ortaya koydu. Aynı zamanda benzetmeli hesap makinelerinin yaratıcısı olarak da kabul edilen Kelvin, 1866‘da Lordluk payesi aldı. 1904‘te Glasgow Üniversitesi rektörlüğüne getirildi. Yaşamının son üç yılında, ışığın dalga teorisi üzerindeki ders notlarını gözden geçirerek yayımladı. Helmholtz‘la birlikte Kelvin, klasik fiziği geliştirerek çağdaş bir bilim dalına dönüştüren iki bilim adamından biri olarak kabul edilir.

 

James Clerk Maxwell

(1831 -1879) Dünya tarihi bir bakıma büyük insanların tarihidir. Bilim tarihine de öyle bakabiliriz. Galileo, Newton, Darwin, Einstein. . . “bilim” dediğimiz görkemli yapının büyük mimarları! Adı bilim çevreleri dışında pek duyulmayan J. C. Maxwell’in de onlar arasında yer aldığı söylenebilir.

Maxwell için 19. yüzyılın en büyük fizikçisi denmektedir. Aslında onu tüm çağların sayılı bilim adamlarından biri saymak daha yerinde olur. Maxwell kısa süren yaşamında her biri onu unutulmaz yapan önemli buluşlar ortaya koydu. Radyo, radar, televizyon vb. icatlara yol açan elektromanyetik ve ışık alanlarındaki devrimsel atılımlarının yanı sıra, renk bileşimleri ile Satürn gezegeninin halkaları üzerindeki açıklamaları, gazların kinetik teorisi ile enerji korunum ilişkisi konularındaki katkıları. . . çalışmaları arasında başlıcalarıdır.

Daha ondört yaşında iken, yetkin elips çizme yöntemine ilişkin matematiksel buluşu Edinburg Kraliyet Akademisinde görüşülerek ödüllendirilmişti.

Maxwell, Faraday’ın “elektromanyetik indüksiyonu” diye bilinen buluşunu ortaya koyduğu yıl dünyaya gelir. Bu ilginç rastlantının sonraki gelişmelerle nasıl bir anlam kazandığını göreceğiz. Seçkin bir ailenin olanakları içinde büyüyen çocuk, yaşamının ilk yıllarında bile kendine özgü ilgileri ve bağımsız düşünebilme yeteneğiyle dikkat çekmekteydi.

Annesi kız kardeşine yazdığı bir mektupta iki yaşındaki oğlundan övgüyle söz eder: “Çok canlı, mutlu bir çocuk. . . . En çok kapı, kilit, anahtar, zil gibi şeyler merakını çekmekte. Ağzından hiç eksik olmayan sorusu, ‘Anne, nasıl bir şeydir bu, göster bana. ‘ Bir başka merakı da, kırlarda dolaştığımızda suların akışını, derelerin çizdiği yolları izlemek!”

“Mutlu çocuk” yedi yaşında iken annesini yitirmenin mutsuzluğunu yaşar; ama öğrenme, araştırma tutkusuyla yeni ufuklara açılmaktan hiç bir zaman geri kalmaz. Son derece duyarlı ve aydın bir kişiliği olan babası, giydiği elbiseden oturduğu evine dek kullandığı hemen her şeyi kendi elleriyle yapan “garip” bir insandı. Öyle ki, oğlu sekiz yaşında okula başladığında, babasının özenle hazırladığı gösterişli giysi içinde bir süre okul arkadaşlarının alay konusu olmuştu. Maxwell’in yaşam boyu süren çekingenlik ve dil tutukluğunda, belki de küçük yaşında başından geçen bu olayın etkisi olmuştur.

Maxwell’in başarısını üstün yetenek ve sezgi gücüne borçlu olduğu yadsınamaz; ama, bilimsel ilgilerinin gelişmesinde babasının payı büyüktür. Baba üyesi olduğu Edinburg Kraliyet Akademisinin toplantılarına oğluyla birlikte katılıyordu. Bu arada çocuk gene babasının sağladığı olanakla her fırsatta Edinburg Gözlemevi’ne uğrayarak gezegen ve yıldızların devinimlerini izlemekteydi. Bu gözlemlerin ilerde Satürn gezegeninin halkaları üzerindeki ödüllendirilen matematiksel çalışmasına zemin hazırladığı söylenebilir.

Bilim tarihinde 19. yüzyılın ilk yarısı özellikle elektrik, manyetizma ve ışık konularındaki çalışmaların ön plana çıktığı bir dönemdir. Işığın dalgalar biçiminde ilerlediği görüşü yaygınlık kazanmış; ayrıca, kristal aracılığıyla istenen yönde kutuplaştırabileceği deneysel olarak gösterilmişti. Ne var ki, elektrik, manyetizma ve ışık arasındaki bağıntı henüz yeterince bilinmediğinden bu olaylar bağımsız araştırma konuları olarak ele alınmaktaydı. Maxwell’in 1850′de bu olayların ilişkilerini belirlemesiyle fizikte bir bakıma Newton’unki çapında yeni bir devrimin temeli atılmış oldu.

Newton’un gravitasyon kuramı, evreni mekanik bir modele indirgeyerek açıklıyordu. Bu modelde, değişik büyüklükteki kütlesel nesnelerin, elektrik yükleri gibi, biribirini etkilediği temel varsayımdı. Faraday bir adım ileri giderek elektrik yüklerinin yalnız biribirini değil çevrelerini de etkilediği görüşüne ulaşır, “elektromanyetik güç alanı” dediği yeni bir kavram oluşturur. Ona göre bu alan uzayda diğer fiziksel nesnelerden bağımsız, kendine özgü bir gerçeklikti.

Değişen manyetik alanın bir iletkende elektrik ürettiğini saptayan Faraday, bu olayı “elektromanyetik indüksiyon” diye nitelemişti. Faraday’ın deneysel buluşlarıyla bir tür büyülenmiş olan Maxwell, daha ileri giderek, söz konusu etkinin yalnız iletkende değil, uzayda da oluştuğunu; üstelik, değişen elektrik alanın da manyetizma ürettiğini gösterir. 1873′de yayımlanan Elektrik ve Manyetizma Üzerine inceleme adlı kitabında ortaya koyduğu denklemlerden, elektrik ve manyetik etkilerin uzayda ışık hızıyla yol aldığı sonucu da çıkmaktaydı.

Işığın yapı ve niteliği bilim adamları için sürgit bir “bilmece” konusu olmuştu. Işık kimine göre dalgasal nitelikteydi, kimine göre parçacıklardan oluşmuştu. Maxwell ise ışığı uzayda dalgasal ilerleyen hızlı titreşimli bir elektro-manyetik alan diye niteliyordu. Her biri değişik titreşim frekansıyla ilerleyen değişik renklerin oluşturduğu ışık, ona göre, elektromanyetik titreşimler skalasında yer alan olaylardan yalnızca biri olmalıydı. Işığın yanı sıra başka elektromanyetik radyasyon formlarının varlığı da araştırılmalıydı.

Maxwell’in kuramsal olarak varsaydığı olaylar ölümünden az sonra deneysel olarak belirlenir. Hertz’in düşük frekanslı radyo dalgaları ile Röntgen’in yüksek frekanslı X-ışınları Maxwell’in öndeyişini doğrulayan bulgulardır. Şimdi bildiğimiz gibi, radyasyon spektrumundaki dalga sıralaması, bir uçta, radyo dalgalarından; öbür uçta, gama ışınlarına uzanan mikro-dalga, kızıl-altı, ışık, ultra-violet, X-ışınları gibi titreşim frekansı giderek yükselen formları içermektedir.

Maxwell de Faraday gibi evreni dolduran son derece ince ve esnek bir ortamı varsayıyordu. Daha sonra vazgeçilen yerleşik görüşe göre elektromanyetik etkilerin dalgasal yayılımı ancak “esir” denen öyle bir ortamla olasıydı. Elektromanyetik dalgaları ilk sezinleyen Faraday olmuştur. Ancak ışığın tüm özelliklerim bu dalgalarla açıklayan matematiksel kuramı Maxwell’e borçluyuz.

Maxwell’in bu amaçla formüle ettiği “vektör analizi” diye bilinen matematiksel teknik ile çok sayıda olayı kapsayan ve şimdi “Maxwell denklemleri” diye geçen dört denklem modern elektromanyetik kuramın özünü oluşturur. Bu denklemler, kuantum ve relativite teorileriyle dalga mekaniğini gerektirmeyen olgular için bugün de geçerliğini sürdürmektedir.

Başlangıçta, Maxwell’in getirdiği kuramsal açıklamalara karşı çıkıldığını biliyoruz. Bir kez, denklemlerine dayalı öndeyileri olgusal olarak henüz yoklanıp doğrulanmamıştı. Sonra kuramı, ışığa özgü yansıma ve kırılma olaylarını açıklamada yetersiz görülüyordu. Ne var ki, bu yetersizlikler çok geçmeden aşılır, elektromanyetik kuram açıklama gücü ve doğrulanan öndeyileriyle yerleşik bir teori, bir “paradigma” konumu kazanır.

Maxwell’in başarısı ne denli vurgulansa yeridir. Temelde kuramsal olan çalışması daha sonra yol açtığı uygulamalı gelişmelerle göz kamaştırıcı bir önem kazanır. Maxwell bilim tarihinde sayılı devler arasında yer almışsa, bunu çıkar gözetmeyen katıksız entellektüel çabasıyla gerçekleştirmiştir.

Faraday içine doğduğu olumsuzlukları, öğrenme merakının sağladığı direnç ve uğraşla aşarak bilimin öncüleri arasına katılmıştı. Maxwell ise içine doğduğu varlığın çekici rehavetine düşmeksizin, bilimin uzun ve yoğun uğraş gerektiren çetin yolunda kendini yüceltti.

 

Alfred Nobel

Stockholm’de 1833 yılında doğmuş İsveçli kimyacıdır. Nitrogliserin’i patlayıcı madde olarak kullanma yollarını araştırdı. 1863 yılında Stockholm’de az miktarda nitrogliserin yapmaya başladı. Birkaç ay süren araştırmalar sonunda meydana gelen bir patlama sonucu laboratuar yıkıldı. Yine de çalışmalarına devam eden Alfred Nobel, 1865′de yeni bir fabrika kurdu ve bir süre sonra ikinci fabrikasını da açtı.

1864 yılında araştırmalarının sonucunu aldı ve dinamit barutunu buldu. Araştırmalarına devam eden Nobel, 1877′de “Balistit” adını verdiği yeni bir çeşit barut tasarladı. 1881′de Paris’e yerleşen Nobel, burada yeni bir fabrika açtı ve araştırmalarına devam etti.

Hemen hemen bütün servetini Nobel ödüllerini dağıtması için bir kuruma bağışladı. 1901 yılında dağıtımına başlanan Nobel Bilim Ödülleri’nden fizik dalında günümüze kadar 154 bilim adamına ödül verilmiştir.

 

WIlhelm Conrad Röntgen

Alman asıllı fizikçi olan Wilhelm Conrad Röntgen, 1845 yılında Rheinland’da doğdu ve 1923 yılında Münih’de öldü. Çocukluğu ve ilköğretim yılları Hollanda’da ve İsviçre’de geçti. Zürih’te üniversite eğitimi gördü. 1876′da Strassburg’da, 1879′da Giessen ve 1888′de Würzburg Üniversitelerinde fizik profesörü olarak öğretim görevi yaptı. 1900′de Münih Üniversitesi Fizik Kürsüsü’ne ve Yeni Fizik Enstitüsü’nün yöneticiliğine getirildi.

1885 yılında kutuplanmış bir yalıtkan hareketinin, bir akımla aynı manyetik etkileri gösterdiğini açıkladı. Fakat asıl ününü, 1895 yılında X ışınlarını keşfetmesiyle kazandı. Bu ışınları inceleyen Röntgen, X ışınlarının bir doğru boyunca yatıldığını, yansıma ve kırılmaya uğramadığını, elektrik veya manyetik alanların etkisiyle yön değiştirmediğini ispatladı. X ışınlarının, cisimlerin içinden geçme kabiliyetlerini inceledi ve bu ışınların havayı iyonlaştırdığını ortaya çıkardı.

1901 yılında tamamladığı bu araştırmaları sonucu, aynı yılın fizik dalında Nobel Bilim Ödülü’ne layık görüldü. X veya g ışımalarının miktar ölçümü birimine kendi ismini vermiştir. Günümüzde röntgen ışınları tıp alanında kullanılmaktadır.

Röntgenin tıpta kullanımı, X ışınlarının organik dokular tarafından eşit olmayan derecelerde emilmesine dayanır. Eşit olmayan bu geçiş, radyolojik gölgeler meydana getirir. Bunlar, ya flüoresan bir ekranda (radyoskopi) ya da gümüş tuzlarının fotoğraf filmi üzerine indirgenmesiyle (radyografi) değerlendirilir. İncelenecek doku ile çevresindeki doku arasında X ışınlarını geçirme miktarında bir fark yoksa, saydam olmayan kontrast maddeler kullanılır.

X ışınları, ışık ışınlarıyla aynı özelliktedir. Fakat frekansları daha büyüktür. X ışını, içinden geçtiği gazı iyonlaştırma özelliği taşır. X ışınlarının tespiti ve şiddetinin ölçülebilmesi için bu ışınlar, iyonlaşma odasından yani altın yapraklı elektroskopa bağlı iki tablası bulunan gaz dolu bir kaptan geçirilir. Elektroskop yapraklarının düşüş hızı, iyonlaşma derecesini ve dolayısıyla bununla orantılı olan ışıma şiddetini ölçer. Şiddet, röntgen cinsinden değerlendirilir.

Bir X ışını demeti, saydam olmayan bir cisimden geçerken yavaş yavaş enerjisini bırakır. Kaybedilen enerji kalınlığa göre artar veya azalır. Ayrıca dalga boyu kısa ışınlar, maddeye daha fazla etki eder ve ağır elementler daha fazla enerji yutar. Bu özelliklerden dolayı, bir maddeye X ışını verilerek maddenin atom yapısı kesinlikle tespit edilebilir.

 

EdIson

Thomas Alva Edison (18471931) 20. yüzyıl yaşamını icatlarıyla büyük bir şekilde etkileyen Amerikalı mucit ve iş adamıdır. bazı icatları tamamen orjinal olmakla birlikte, eski icatların geliştirilmesi veya yönetimi altında çalışan yüzlerce çalışana aittir. Yine de Edison elinde bulundurduğu kendi adını taşıyan Amerikan patentiyle tarihteki en önemli ve en verimli mucitlerden biri olarak nitelendirilir. Patentlerinin çoğu Amerika’nın haricinde Almanya, Fransa ve İngiltere onaylarına da sahiptir.

Thomas Alva Edison, Amerika‘nın Ohio eyaletinde Samuel Ogden Edison, Jr. ve Nancy Matthews Elliott’un (1810–1871) 7. çocukları olarak doğdu. Yedi yaşındayken ailesiyle birlikte Michigan‘daki Port Huron’a yerleşen Edison, ilköğrenimine yaşadığı bir hastalık dolayısıyla geç başladı. Ancak yaklaşık üç ay sonra algılamasının yavaşlığı nedeniyle okuldan uzaklaştırıldı. Kanada’da daha önce öğretmenlik yapmış olan annesi büyük bir zevkle oğlunun eğitimine evde devam ediyordu. Okuması ve tecrübe edinmesi için onu sık sık teşvik ediyordu ve onu sık sık kontrol ediyordu. Derslerinin çoğu çok iyiydi. Son derece meraklı ve yaratıcı kişiliğe sahip bir çocuk olan Edison, 10 yaşına geldiğinde kendisini fizik ve kimya kitaplarına verdi. Bu arada evlerinin kilerinde bir kimya laboratuvarı kurdu. Özellikle kimya deneylerine ve Volta kaplarından elektrik akımı elde etmeye yönelik araştırmalara ilgi duydu; bir süre sonra arkadaşıyla telgraf yaptı ve Mors alfabesini öğrendi. 12 yaşındaysa duymada güçlük yaşamaya başladı. Bunun sebebi olarak birçok teori ortaya atıldıysa da, Edison’a göre kendisi sağır oldu çünkü kendi kulakları tarafından bir tren vagonuna çekilmişti. 12 yaşına geldiğinde ailesine yardım etmek için Port Huron ile Detroit arasında çalışan trende gazete ve şekerleme satmaya başlayan, ömrünü kurtardığı Jimmie Mackenzie tarafından telgraf operatörlüğü işine başladı. Jimmie’nin Michigan’daki Clemen Dağları’nda J. U. Mackenzie istasyon temsilcisi babası, oğlunun Edison’u kendi kanatları altına almasını ve onu yetiştirmesinden çok minnettardı. Edison’un sağırlığı onu etkilemişti ve yanındaki telegraftan gelen sesleri tekrar duyması için onu teşfik etti. Bu dönemde Edison, telgırafıyla uğraştı arkadaşıda yanında ona yardım ediyordu”mükemmel icat adlı yapıtını okudu ve derinden etkilendi. Bunun üzerine bir yandan komşusunun deneylerini tekrarladı bir yandanda kendi deneylerine ağırlık vererek daha düzenli çalışmaya ve notlar tutmaya başladı. O yıllardaki akıl hocalarından biride telegrafcı ve kaşif Franklin Leonard Pope’tu. Kendisi fakirleşen Edison’a çalışması ve yaşaması için Elizabeth, New Jersey’deki yerini kullanmasına izin verdi.

Elektrikli telgrafla alakalı ilk buluşlarından biride borsadaki değerleri kaydeden bir cihazdı stock ticker. Edison’un kabul görmüş ilk icadı elektrikli oy kaydediciydi, 28 Ekim 1868.

Edison aynı zamanda ampulü de bulmuştur.

24 Aralık 1871 yılında, 2 ay önce tanışmış olduğu 16 yaşındaki Mary Stilwell ile evlendi. Üç çocukları oldu: Marion Estelle Edison (bilinen adıyla Dot), Thomas Alva Edison, Jr. (bilinen adıyla Dash) ve William Leslie Edison. Mary Edison 9 Ağustos 1884′te hayatını kaybetti.

1880′lerde Fort Myers, Florida‘dan bir arsa satın aldı ve daha sonra burda kışları kalmak için kendine küçük bir ev inşa ettirdi. Otomobil endüstrisinin büyük adamı Henry Ford yakın bir zaman sonra Edison’un evinin birkaç yüz metre ötesine taşındı. Bu nedenle Edison ve Ford ölene dek arkadaş kaldılar. 24 Şubat 1886 Edison ikinci evliliğini 19 yaşındaki Mina Miller ile gerçekleştirdi. Bu evliliğinden de üç çocuk sahibi oldu: Madeleine Edison, Charles Edison, ve Theodore Edison.

Thomas Alva Edison, kariyerine New Jersey’deki Newark’ta otomatik tekrarlayıcı ve geliştirilmiş telgraf cihazları ile mucit olarak başlamıştır. Ancak ona ün kazandıran ilk keşfi 1877 yılında geliştirdiği fonograftı. Bu başarı halk tarafından çok beklenmedik karşılanmış ve genelde büyülü olarak görünmüştür. Edison o zamanlarda yaşadığı şehir olan “Menlo Park’ın Büyücüsü” diye de bilinir. Edison’un fonografı kayıtlarını çok ince, kalay yaprağından yapılmış bir silindire gerçekleştirildiğinden kayıtlar sadece birkaç kez dinlenebilirdi. 1880′lerde balmumuyla kaplanmış karton silindirler kullanılan yeni modeller Alexander Graham Bell, Chichester Bell ve Charles Tainter tarafından üretilmeye başladı. Thomas Edison’un “Mükemmel Fonograf”ı yapmak için çalışmalarına devam etmesinin sebeplerinden biri de budur.

Thomas Edison özgür düşünceli biriydi ve yanlısıydı. İlahiyatçı kesimin çizdiği Tanrı portresine inanmıyordu ancak ulu bir güce olan inancından da şüphe etmiyordu. ruhu çok önemliydin varlığını kesinlikle redediyordu. İnanışıyla ilgili pozisyonunu Hristiyan inanışıyla saldırgan agnostisizm arasında bir yer olarak tanımlıyordu.

Bini aşkın buluş yapan, bu arada elektrik ampulünü fonografi ve film gösterme makinelerini geliştiren Amerikalı mucittir. 7 yaşındayken ailesi ile birlikte Michigan’daki Port Huron’a yerleşen Edison, ilk öğretimine burada başladıysa da yaklaşık üç ay sonra algılamasının yavaşlığı nedeniyle okuldan uzaklaştırıldı. Bundan sonraki üç yıl boyunca özel öğretmenlerle eğitildi.

Son derece meraklı ve yaratıcı kişiliğe sahip bir çocuk olan Edison, 10 yaşına geldiğinde kendisini fizik ve kimya kitaplarına verdi ve bu arada evlerinin kilerinde bir kimya laboratuvarı kurdu. Özellikle kimya deneylerine ve Volta kaplarından elektrik akımı elde etmeyi yönelik araştırmalara ilgi duydu; bir süre sonra kendi başına bir telgraf aygıtı yaptı ve Mors alfabesini öğrendi.

O günlerde geçirdiği bir hastalık nedeniyle kulakları ağır işitmeye başladı. 1878′de William Wallace’ın yaptığı 500 mum gücündeki ark lambasından etkilenen Edison, bundan daha güvenli olan ve daha ucuz bir yötemle çalışan yeni bir elektrik lambasını geliştirme çalışmasına girişti. Bu amaçla açtığı bir kampanyanın yardımıyla önde gelen işadamlarının parasal desteğini sağladı ve Edison Electric Light Company’yi kurdu.

Oksijenle yanan elektrik arkı yerine, havası boşaltılmış bir ortamda ışık yayan ve düşük akımla çalışan bir ampul yapmayı tasarlıyordu. Bu amaçla, 14 ay boyunca filaman olarak kullanabileceği bir metal tel yapmaya uğraştı . Sonunda 21 Ekim 1879′da, özel, yüksek gerilimli elektrik üreteçlerinden elde ettiği akımla çalışan, karbon filamanlı elektrik ampulünü halka tanıttı.

Sonraki yıllarında Edison, burada laboratuvarının 10 katı kadar bir laboratuvar açtı. İki kez evlenen Edison’un 6 çocuğu oldu. Yaşamının sonuna kadar yeni buluşlar yapmaya devam etti. Geriye çığır açıcı buluşlarını yanı sıra, gözlemleriyle dolu 3. 400 not defteri bıraktı.

 

PAVLOV IVAN

(1849-1936) Son derece sabırlı, kendine güvenen, coşku dolu bir bilimadamı olan Pavlov, daha sonra “koşullanmış refleks” adım vereceği, alışkanlığa bağlı davranışlar üzerinde çalışmalar yaptı. Sindirim sistemi üzerindeki çalışmalarında olduğu gibi, bu çalışmasında da denek (kobay) olarak köpekleri kullandı.

Bir çoğumuz apansız şimşek çaktığında, ya da beklenmedik bir çığlık duyduğumuzda yerimizden sıçrarız. Bu davranış bir tehlike karşısında olduğumuz düşüncesinden doğmamakta, doğrudan oluşmaktadır. Düşünmek için zaman da yoktur zaten. Karanlıktan aydınlığa çıktığımızda gözlerimiz elimizde olmadan kamaşır; sert bir hareketle yüzyüze geldiğimizde irkiliriz. Nefes borumuza küçük bir yemek kırıntısı kaçtığında öksürmeye, üşüdüğümüzde titremeye başlarız.

İstenç dışı oluşan bu tür davranışlara refleks denir. Yeni doğan çocuğun ağlaması tipik bir reflekstir; herhangi bir öğrenme ya da koşullanma gerektirmez. Refleks, insana özgü bir davranış değildir; daha çok hayvanların sergilediği doğal bir tepkidir. Davranışlarımızın küçük bir bölümünü kapsayan doğal tepkilerimizi değiştiremeyiz. Oysa sosyal ilişkiler içinde kazandığımız davranışlarımızın genellikle basit bir “etki – tepki” tekdüzeliği içinde kaldığı söylenemez; bunlar arasında refleks görünümünde olanlar bile değişime açıktır. Bu, bir ölçüde hayvanlar için de doğrudur.

Sirk hayvanlarının bizi eğlendiren, çoğu kez hayrete düşüren becerileri “refleks” dediğimiz doğal tepkiler değil, öğrenilmiş davranışlardır. Bir aslan ancak belli bir eğitim sürecinden sonra ateş çemberinden atlayarak geçer. Ayının tef eşliğinde dansetmesi, köpeğin iki ayağı üstünde durması ya da sahibinin fırlattığı topu kapıp getirmesi doğal tepki değil, kazanılan birer alışkanlıktır. Bir beceri, yerleşik bir alışkanlığa dönüşünce, düşünme gerektirmeyen refleks türünden bir davranış haline gelir, belli bir uyarıyla istenç dışı olarak açığa çıkar.

Örneğin, sorulduğunda adımızı hemen söylememiz; “iki kere iki kaç eder” sorusunu “dört” diye yanıtlamamız; telefon çaldığında ahizeyi kaldırır kaldırmaz “alo” dememiz; gömleğimizi iliklememiz, ayakkabı bağını bağlamamız, vb. davranışlarımız düşünme gerektirmeyen refleks türünden hareketlerdir.

İlk bakışta, doğuştan sahip olduğumuz reflekslerle, sonradan kazandığımız yüzme, konuşma, dansetme gibi becerilerimizi ayırmak kolay değildir. Bu tür alışkanlıkların oluşumuyla ilk ilgilenen bilimadamı, Rus fizyologu Ivan Pavlov olmuştur.

Bir köy papazının oğlu olan Ivan, daha küçük yaşta okumaya, öğrenmeye olağanüstü ilgi gösteriyordu. Çocuğun bu ilgisini farkeden ailesi, onun iyi bir eğitim alması yolunda adeta seferber oldu. Orta öğretim yıllarında, seminerine katıldığı bir öğretmeninin teşvikiyle, Ivan bilime yöneldi ve araştırma merakı giderek onda yaşam boyu sürecek bir tutkuya dönüştü.

Genç araştırmacı liseyi bitirir bitirmez St. Petersburg Üniversitesi Doğa Bilimleri Fakültesi’ne başvurdu. Fizyolojiye duyduğu özel ilgi nedeniyle yüksek öğrenimini tıp alanında tamamladı, ama hekim olarak çalışmadı. Tek amacı kendi eliyle kurduğu bir laboratuvarda araştırmalarını sürdürmekti. Ancak parasal olanakları kısıtlıydı. Sonunda özel bir klinikle ortaklaşa küçük bir laboratuvar kurmayı başardı.

Pavlov, donanımı yetersiz olan bu yerde tek başına çalışmaya koyuldu. Uzun süre bir asistan bile tutamadı. Ne var ki, genç bilimadamı kararlıydı. Çok geçmeden deneyleriyle bilim çevrelerinin dikkatini çekmeyi başardı ve böylece Tıp Akademisi’ne profesör olarak atandı.

Bir süre sonra da yeni kurulan Deneysel Araştırma Enstitüsü’nün başkanlığına getirildi. Özellikle sindirim sistemi üzerindeki araştırmasıyla adı uluslararası bilim çevrelerinde duyulan Pavlov, 1904′de Nobel Ödülü’nü kazandı. İşlediği ana tez, sindirim dahil, bedensel tüm fonksiyonların sinir sisteminin denetiminde olduğuydu (o zaman hormonların sindirim sürecindeki rolü henüz bilinmiyordu).

Son derece sabırlı, kendine güvenen, coşku dolu bir bilimadamı olan Pavlov, eskiden beri ilgilendiği bir konuya dönmeye karar verdi. Bu konu, onun daha sonra “koşullanmış refleks” adını vereceği, alışkanlığa bağlı davranışlardı. Pavlov, sindirim sistemi üzerindeki çalışmalarında olduğu gibi, bu yeni çalışmasında da denek (kobay) olarak köpekleri kullandı.

Bilindiği üzere, yiyecek (örneğin bir kemik ya da et parçası) gördüklerinde köpeklerin ağızları sulanır, kimi hallerde salyaları akar. Aslında bu doğal refleks, derece farkıyla insanlarda da görülen bir olaydır. Ayrıca insanların ağzının sulanması için, doğrudan yiyecek görmeleri de gerekmemektedir. Yatılı okul öğrencileri, öğle yemeği öncesi zilin çalmasıyla ağızlarının nasıl sulandığını çok iyi bilirler.

Pavlov, aynı koşullanmanın köpeklerde de olup olmadığını ortaya koymak istedi. Yaptığı deney basitti: Odasında tuttuğu köpeğe bir zil sesinden sonra yiyeceğini verdi. Bu uygulama düzenli olarak birkaç hafta sürdürüldükten sonra köpeğin ağzının sulandığını gördü. Hayvan doğrudan yiyeceğe gösterdiği refleksi artık zil sesine de göstermekteydi.

Başka bir deneyinde Pavlov, zil sesi yerine uyarıcı olarak biri çembersel, diğeri oval biçimde iki ışık kullandı. Köpeğe, yiyeceğini çembersel ışıktan sonra verip, oval ışıktan sonra vermemeye başladı.

Bir süre sonra köpeğin çembersel ışığa refleks gösterdiğini, oval ışığa ise göstermediğini; ancak, oval ışığı çembersel ışığa dönüştürme süreci başlayınca, hayvanın ayırdetme sıkıntısına düştüğünü ve çok geçmeden hırçınlaşarak sağa sola koşup havlamaya başladığını saptadı (Neyse ki Pavlov, koşullanmayı çözme yöntemiyle köpeği içine düştüğü bunalımdan kurtarmıştır!).

Bu sonuç kuşkusuz, hayvanların da insanlar gibi deneyimler yoluyla refleksler kazanabilecekleri anlamına gelmektedir.

Pavlov bu kadarla yetinmemiş ve yine deneysel olarak, hayvanların da insanlar gibi koşullanmayla edinilmiş reflekslerden kurtulabileceğini göstermiştir. Ağız sulanması refleksine dönelim: Yukarıda belirtildiği üzere, refleksin kurulmasına yönelik ilk aşamada, yiyecek verilmeden önce zil çalınmaktaydı. Bu aşamada köpeğin bir süre sonra zil sesiyle yiyecek beklentisi içine düştüğünü biliyoruz.

Koşullanmayı çözmeye yönelik ikinci aşamada, zil çaldığı halde yiyecek verilmez; beklenti giderek zayıflamaya yüz tutar; sonunda zil sesi etkisini yitirir, koşullanma kırılır. Zil sesine karşın hayvanda refleks görülmez olur. Bu, hayvanlarda da koşullanmış davranışın doğal reflekse dönüşmediği anlamına gelmektedir.

Başka bir deyişle, deneyimle kazanılan (ya da yitirilen) bir refleks, salt fizyolojik bir olay değil, kimi ruhsal yetileri de içeren, psikolojik bir davranıştır. Pavlov’un ulaştığı bu sonucun, yüzyılımızın ilk yarısında büyük bir atılım içine giren “Davranış Psikolojisi” dediğimiz Behaviorism’e yol açtığı söylenebilir.

Sindirim sistemi üzerindeki çalışması Pavlov’a Nobel Ödülü’nü kazandırmıştı; ama onu dünya ölçüsünde ünlü kılan, koşullanmış refleks çalışması oldu. Bolşevik devriminden sonra Sovyetler Birliği Pavlov’a üstün bir saygınlık tanır. Bu belki de onun yöntemiyle ‘Halkların” Marxist ideolojiye kolayca koşullandırılabileceği beklentisinden ileri gelmiştir.

Ivan Pavlov köpekler üzerindeki deneyleriyle insan davranışlarını inceleyen psikologlara gerçekten önemli bir ışık tutmuştu. Ne var ki, insan davranışlarının salt koşullanmış reflekslere indirgenemeyeceği yetmiş yıllık Sovyet deneyiminin sonuçsuz kalmasıyla açıklık kazanmıştır.

 

Becquerel – AntonIe HenrI

Fransız fizikçisi Henri Becquerel 1852 yılında Paris’te doğdu ve 1908 yılında öldü. 1877 yılında mühendis, 1892′de Museum d’historie naturelle’e, 1895′te Politeknik okuluna fizik profesörü oldu. 1889′da Institut üyesi oldu.

X ışınlarının bulunmasından sonra bu ışınlara fosforışı olayının arasında bir ilişki bulunup bulunmadığını araştırdı. Böylece 1896′da uranyum tuzlarında radyoaktivite olayını buldu. Bir elektromıknatısça sağlanan manyetik alanda uranyumun saçtığı ışınları tahlil etti ve bu ışınların uranyum atomuna has bir olgu olduğunu ortaya çıkardı.

Ayrıca bu ışınların uranyumun bütün bileşikleri için geçerli olduğunu saptadı. Bunların sonunda uranyuma tutulan gazların iyonlaştığını da o fark etti. ayrıca manyetik dönerle porlama, fosforışı, kızılötesi tayf üzerinde de çalışmalar yapmıştır.

 

HenrI Poincarè

19. yüzyılın ikinci yarısının en büyük Fransız matematikçisi Poincarè’dir (1854-1912). 1881 yılından ölümüne değin Sorbonne Üniversitesi’nde profesörlük yapan Poincarè, her yıl çok değişik konularda çok parlak dersler vermiştir; bunlar arasında, potansiyel kuramı, ışık, elektrik, ısının iletilmesi, elektromagnetizma, hidrodinamik, gök mekaniği, termodinamik gibi matematiksel fizik konuları ile olasılık teorisi gibi matematik konuları bulunmaktadır.

Poincarè vermiş olduğu derslerin yanısıra, yazmış olduğu çok sayıdaki yapıtla da etkili olmuştur. Türkçe’ye de çevrilen Bilimin Değeri ve Bilim ve Varsayım gibi bilim felsefesiyle ilgili kitapları bunlardan sadece birkaçıdır. ayrıca otomorfik ve Fuchs fonksiyonları, diferansiyel denklemler, topoloji ve matematiğin temelleri hakkında makaleler yayımlamış, diferansiyel denklemlerin çözümü için genel bir yöntem bulmuştur. Matematiğin temelleriyle ilgili olarak, matematiksel düşünmenin gerçek aracının matematiksel indüksiyon olduğunu düşünmüş ve bu yöntemin sezgisel olarak daha basit bir yönteme indirgenebileceğine ihtimal vermemiştir.

Poincarè gök mekaniğiyle de ilgilenmiş, özellikle Üç Cisim Problemi üzerinde durmuştur. Bu alanla ilgili olan ıraksak serileri incelemiş, Asimptot Açılımları Kuramını geliştirmiş, yörüngelerin düzenliliği ve gök cisimlerinin biçimleri gibi konularla ilgilenmiştir. Aynı konular Laplace’ın da ilgi alanı içine girmektedir; ancak Poincarè her yönüyle özgündür. Görelilik, kozmogoni, olasılık ve topolojiyle ilgili modern kuramların hepsi Poincare’nin araştırmalarından oldukça etkilenmiştir.

 

Karl Pearson

Karl Pearson (1857-1936), modern istatistiğin kurucularından biri olarak kabul edilen İngiliz bilim adamıdır. 1857 yılında doğan Pearson, Londra College Üniversitesi, Cambridge ve Gresham College’de uygulamalı matematik ve mekanik profesörlüğü yaptı. 1892’de ilk önemli eserlerinden olan “The Grammar of Sciences” (Bilimler Grameri) adlı kitabını yayınladı.

1890’lı yıllardan itibaren matematik ve istatistiğin biyolojiye uygulanması ile ilgilendi ve bu konuya ilişkin çalışmalarını “Mathematical Contributions to the Theory of Evolution” (Evrim Teorisine Matematik Katkılar) adı altında topladığı çok sayıda makale aracılığıyla açıkladı.

1902 yılında Cambridge’de kurmuş olduğu “Biometrica” adlı dergi, günümüzde de istatistik teori ve uygulamalarında dünyada en ileri gelen dergilerdendir. 1907’de Francis Galton Laboratuvarı’nın yönetimini üstlenen Pearson, istatistik alanında kendi adını taşıyan birçok metot geliştirmiştir. Bölünmelerin asimetrilerinin derecesini ölçmede kullanılan Pearson asimetri katsayıları ve matematik ile istatistikte kullanılan Pearson kanunları, bu metotlardan bazılarıdır.

Gözlem sonucu elde edilen fiili frekanslar ile bir hipoteze göre varolması beklenen frekanslar arasındaki farkların bölünmesinin ki-kare bölünmesine uyduğunu ve dolayısıyla bu farkların anlamlılığının test edilmesinde ki-kare bölünmesinden yararlanılabileceğini ortaya koymasından ötürü bu yaklaşım da Pearson’un adını taşımaktadır. 1936 yılında ölen bu bilim adamının 100’den fazla eseri bulunmaktadır.

 

Max Planck

Max Karl Ernst Ludwig Planck (1858 -1947), Alman fizikçi. 1918 Nobel Fizik Ödülü sahibi. Yüksek öğrenimini Münih ve Berlin’de yaptı. 1880′de Münih’te fakültede göreve başladı ve beş yıl sonra Kiel Üniversite’sinde profesör oldu. 1889′da Berlin Üniversite’sinde Kirchhoff’un yerini aldı ve 1926′ya kadar bu görevde kaldı. Kuantum kuramının kurulmasına götüren, siyah cisim ışımasının spektral dağılımını açıklamak için yaptığı bir girişimde “eylem kuantumu” (Planck sabiti) kavramını ortaya attı. Enerjnin kuantlaşmış doğasına ilişkin bu keşfi için 1918′de Nobel ödülünü kabul ettiği konuşmasında şöyle dedi:” Fakat radyasyon formülünün doğru olduğu, mükemmel bir şekilde sınanmış olsa bile, bütün bunlardan onun bulunduğu günden beri, ona gerçek bir fiziksel açıklama yapmak için çok çabaladım ve bu beni Boltzmann’ın entropi ile olasılık arasındaki bağıntılarını dikkate almaya götürdü”.

“Kuantum Kuramı”nı geliştirmiştir. Termodinamik yasaları üzerine çalıştı. Kendi adıyla bilinen “Planck sabiti”ni ve “Planck ışınım yasası”nı buldu. Ortaya attığı kuantum kuramı, o güne değin bilinen fizik yasaları içinde devrimsel ve çığır açıcı nitelikteydi.

 Ünlü deneysel fizik bilgini Rutherford, 1923′te İngiliz Bilimler Akademisi’nde ortalığı bastıran gür sesiyle, “Fiziğin şahlandığı bir çağda yaşıyoruz!” diyordu. Bu şahlanışın öncülerinden biri Einstein, biri de Planck’tı kuşkusuz. Einstein, görecelik kuramlarıyla klasik mekaniğin temel ilkelerini aşmış; uzay, zaman ve gravitasyon kavramlarına yeni boyutlar kazandırmıştır. Planck ise enerji ve radyasyon üzerindeki çalışmalarıyla kuvantum teorisinin temellerini atmıştı.

Max Planck, Almanya’da entelektüel bir aile çevresinde büyür. Babası hukuk dalında, seçkin bir profesördü. Orta öğrenimini Münich’te Max Millian Jimnazyumu’nda tamamlayan Max, bilime gönül vermiş bir öğretmenin etkisinde fiziğe özel bir ilgiyle bağlanır; bir yandan da ailesinin sağladığı olanakla piyano dersleri alır.

Fizik öğrenimi için üniversiteye başvurduğunda, dönemin büyük fizikçisi Hermann Helmholtz, “Fizik’te artık yapılacak fazla bir şey kalmamıştır; ilerlemeye açık başka bir bilim dalını seçsen daha iyi olur. ” demişti. Ama Max, çocukluk hayalinden kopmamaya kararlıydı. Üstelik, üniversite öğreniminde, Helmholtz ve Kirchhof gibi gerçekten seçkin profesörlerin öğrencisi olmanın kendisi için kaçırılmaz bir fırsat olduğunu biliyordu.

Münich ve Berlin üniversitelerinde öğrenimini sürdüren genç fizikçinin hidrojen çözülümüne ilişkin doktora tezi, tüm meslek yaşamındaki tek deneysel çalışması olarak kalacaktı. Asıl ilgi alanı matematiksel fizik olan Planck, olağanüstü yeteneğiyle kısa sürede meslek çevresinin dikkatini çeker; daha otuz yaşında iken Berlin Üniversitesi fizik kürsüsüne atanır.

Planck’ın uzmanlık alanı, “termodinamik teori” diye bilinen ısı bilimiydi. Yanan bir ampule dokunulduğunda hemen algılanacağı gibi ısı ile ışık birbirine ilişik olaylardır. Işık radyasyonu üzerinde çalışırken Planck bir sorunla karşılaşır. Klasik fiziğin, “Enerjinin Eşit-bölünme Teoremi”ne göre kor halindeki bir cisimden salınan radyasyonun, hemen tümüyle, dalga uzunluğu olası en kısa dalgalardan ibaret olması gerekiyordu. Bu, küçük bir ısının bile son derece parlak bir ışık vermesi demekti. Öyle ki, vücut ısımızın bizi bir ampul gibi ısıtması beklenirdi. Radyasyon enerjisi sürekli bir akış olarak varsayıldığından, spektrumun kısa dalga (yüksek frekans) kesiminin alabildiğine geniş olması, hatta sınırsız uzaması gerekirdi.

Başka bir deyişle dalga uzunluğunun giderek kısalmasıyla enerjinin sonsuza doğru artması söz konusuydu. Fizikçiler bu beklentiyi “mor ötesi katastrof’ diye niteliyorlardı. Oysa, deney sonuçları spektrumda çok değişik bir enerji dağılımı ortaya koymaktaydı. Bir kez deney, hiçbir maddenin, ne denli akkor haline getirilirse getirilsin, sonsuz enerji salacağını kanıtlamıyordu. Sonra çıkan enerjinin büyük bir bölümünün orta dalga uzunluktaki kesimde olduğu görülüyordu.

Yerleşik kuram ile deney sonuçları arasındaki tutarsızlık gözden kaçmayacak kadar açıktı. Sorun deneysel verilere dayalı hesaplamalarda bir hatadan kaynaklanmıyor idiyse, yerleşik kuramın yetersizliği söz konusu olmalıydı.

Planck’ın yetkin örnek olarak aldığı kara-cisim üzerinde yürüttüğü kuramsal çalışması 1900′de yayımlanır. Çalışmanın dayandığı temel düşünce şuydu: Madde her biri kendine özgü titreşim frekansına sahip ve bu frekansla radyasyon salan vibratörlerden ibarettir. Gerçi bu düşüncenin yürürlükteki kurama ters düşen yanı yoktu: Ne var ki, Planck aynı zamanda vibratörlerin enerjiyi sürekli bir akıntı olarak değil, bir dizi kesik fışkırmalarla saldığı görüşünü de ileri sürmekteydi. Bu demekti ki, belli bir frekanstaki bir osilatörün saldığı veya aldığı enerji ancak tam birimler biçimde olabilir; birim kesirleriyle olamazdı.

Planck’ın çözüm arayışında başvurduğu istatistiksel yöntemin de, inceleme konusu ilişkilerin sayılabilir olmasını gerektirmesi, radyasyon enerjisinin bireysel bölümlerden oluştuğu varsayımını kaçınılmaz kılıyordu.

Önerilen çözüm basitti: Gözlem sonuçlarıyla bağdaşmayan sürekli akış varsayımından vazgeçmek! Ne var ki, şimdi oldukça açık ve mantıksal görünen bu çözümün o dönemde hemen benimsenmesi bir yana, akla yakınlığı bile kolayca düşünülemezdi. Doğanın sürekliliği bir hipotez ya da sıradan bir varsayım olmanın ötesinde doğruluğu sorgulanmaz bir inançtı adeta! Newton mekaniği gibi Maxwell’in elektromanyetik teorisi de doğanın sürekliliğini içeriyordu.

Nitekim elektromanyetik teoriyi deneysel olarak doğrulayan Hertz, ışığın dalga teorisine değinerek bu teoriyle fiziğin değişik kollarının sağlam, tutarlı bir bütünlük kazandığını belirtmekten geri kalmaz.

Yerleşik bir kuramı sorgulamak kolay değildir gerçekten. Hele yeni bir kuram oluşturmak, üstün zekâ ve hayâl gücünün de ötesinde yüreklilik ister. Doğrusu, Planck’ın, getirdiği çözümle devrimsel bir gelişmeyi başlattığının farkında olduğu; dahası çözümünün, bağlı olduğu klasik fiziği sarsabileceğini öngördüğü söylenemez. Ama onun yadsınamaz yanı, karşılaştığı soruna gösterdiği olağanüstü duyarlılıktı.

Bir özelliği de özentisiz olmasıydı: Çözümüne deneysel verileri matematiksel olarak dile getiren masum bir formül gözüyle bakıyordu. Oysa, “kuvantum” dediği bir enerji paketi ile bir dalga frekansı arasındaki ilişkiyi belirleyen denklemi (E = h. f), bilimde yeni bir devrimin temel taşıydı [Denklemde E enerjiyi, f radyasyon frekansını, h ise "Planck değişmezi" denen sayıyı (6,62. 10-34 Joule-saniye) göstermektedir]. Buna göre, bir enerji kuvantumu, dalga frekansıyla Planck değişmezinin çarpımına eşittir (ışık hızı gibi doğanın temel değişmezlerinden sayılan h, herhangi bir radyasyon enerji miktarının dalga frekansına orantısını simgelemektedir).

Planck’ın önerdiği hipotez başlangıçta hiç değilse ışığın dalga teorisine doğrudan bir tehlike oluşturmuyordu, belki. Ama klasik fiziğin önemli bir ilkesi olan doğanın sürekliliği varsayımı sarsılmıştı. “Doğa asla sıçramaz” anlamına gelen eski Latince özdeyiş, “Natura non facit saltus” geçerliliğini sürdüremezdi artık!

Kaldı ki, çok geçmeden Einstein’in 1905′te ortaya koyduğu “Fotoelektrik Etki” diye bilinen teorisiyle ışık da kuvantum teorisinin kapsamına girer. Böylece ısı, ışık, elektromanyetizma vb. radyasyon türlerinin tümünün kuvanta biçiminde verilip alındığı hipotezi doğrulanmış olur. Bu hipotez daha sonra Bohr, Schrödinger, Heisenberg vb. bilim adamlarının önemli katkılarıyla çağımız fiziğine egemen kuvantum mekaniğine dönüşür. Planck, istemeyerek de olsa bu büyük devrimin öncüsüydü.

Çağımızın ünlü fizikçisi Max Born, Planck’ın bilimsel kişiliğini kısaca şöyle belirtmişti: “Yaratılıştan tutucu bir kafa yapısına sahipti; “devrimsel” diyebileceğimiz hiçbir eğilim ve özentisi yoktu. Olguları aşan spekülasyonlardan da hoşlanmazdı. Ne var ki, salt deney verilerine olan saygısı nedeniyle, fiziği temelinden sarsan en devrimci düşünceyi ileri sürmekten de kendini alamadı. ”

Bu erdemli kişi, ne yazık ki, uzun yaşamını trajik bir kararla noktalamak zorunda bırakılır. Yedi çocuğundan yaşamda kalan tek oğlu 1944′te Hitler’e suikast suçlamasıyla yakalananlar arasındaydı. Nazi yöneticilerinin yaşlı Planck’a önerileri “basit” olduğu kadar korkunçtu: “Nazizme inanç ve bağlılık duyurusunu imzala, oğlun idamdan kurtulsun!”

Planck, tek umudu olan oğlunun ölümü pahasına, yaşam anlayışına ters düşen duyuruyu imzalamaz!

Ünlü fizikçi Max Born, Planck için şöyle diyordu: “Yaradılıştan tutucu bir kafa yapısına sahipti; devrimsel hiçbir istek ve eğilimi olmadığı gibi, spekülasyondan da hoşlanmazdı. Ne var ki, olguların mantıksal sonuçlarına öyle saygılıydı ki, fiziği temelinden sarsan en devrimci fikri ileri sürmekten kendini alamadı”.

 

MarIe CurIe

(1867-1934) “Artık dayanamadığını bu aşağılık dünyaya veda etmek istiyorum. Neyse ki yokluğum büyük bir kayıp olmayacak!”

Bu sözler genç yaşında sevgilisine kavuşamayan güzel bir kızın mutsuzluk çığlığı. Bu kız onyedi yaşında iken ilerde iki kez Nobel Ödülü kazanan tüm zamanların en büyük bilim kadını olacağını nasıl bilebilirdi ki. Hem de doğup büyüdüğü ülkesinde değil, öğrenim için gittiği yabancı bir ülkede!

Manya Sklodowska, Polonya’nın başkenti Varşova’da dünyaya geldi. Köy kökenli ana babası salt eğitim tutkusuyla genç yaşlarında başkente göçmüşlerdi. Babası lisede fizik ve matematik öğretmeni, annesi usta bir piyanist olmuştu. Manya on yaşına geldiğinde annesinin ölümüyle yaşamının ilk derin acısına gömüldü.

O dönemde Polonya, Çarlık Rusya’nın egemenliği altındaydı. Özgürlük arayışlarına olanak tanınmamakta, küçük bir kıpırdama “isyan” diye acımasızca bastırılmaktaydı. Yabancı boyunduruğunda olmayı içine sindiremeyen toplumun aydın kesiminde yer alan Manya’nın babası çok geçmeden okuldaki görevinden uzaklaştırıldı. Dört çocuklu aile için sıkıntılı günler başlamıştı ama baba kararlıydı. Çocuklarının eğitimi için hiç bir özveriden geri kalmayacaktı.

Manya, liseyi birincilikle bitirdi ve altın madalyayla ödüllendirildi. Kendisinden önce iki kardeşi de aynı ödülü almışlardı. Yüksek öğrenim olanağı bulamayan Manya baba ocağı köye gönderildi; ilerde özlemini hep duyduğu, bir yıl süren güzel bir tatil yaşadı. En çok hoşlandığı şey de, gece yarılarına uzanan danslı eğlencelere katılmaktı.

Manya Varşova’ya döndüğünde yeniden üniversiteye gitme olanağı aramaya koyuldu. Amacı ablası gibi Paris’e gidip Sorbonne’da okumaktı. Ama buna elverecek mali desteği nasıl bulacaktı? Tüm başvuruları sonuçsuz kalmıştı. Sonunda ablası ile ortak bir çözüm yolu buldular: Önce Manya bir işe girip ablasına öğrenim desteği sağlayacak, sonra üniversiteyi bitirdiğinde ablası Manya’yı destekleyecekti.

Manya işe soylu geçinen bir Rus ailesinde mürebbiye olarak başladı. Sonra entellektüel düzeyi daha yüksek bir ailenin yanına geçti. Yıllarca para gönderdiği ablası mezun olunca, okuma sırası Manya’nındı artık. Yirmi üç yaşında Sorbonne Üniversitesi Fen Fakültesi’ne kaydolunca düşlediği dünyasına kavuştu.

“Manya” adı Fransızca’daki söylenişiyle “Marie”ye dönüşen genç kız istençle başladığı dört yıllık öğrenimini, sobası bile olmayan bir çatı katında çoğu günler peynir, ekmek ve çayla yetinerek sürdürdü. Ne var ki, yoksunluk Marie’nin direncini kırmayıp, tam tersine artırdı: Coşkulu öğrenci matematik, fizik, kimya ve astronominin yanı sıra müzik ve şiir derslerine de katıldı. Mezun olur olmaz Fizik’te Master derecesi için girdiği sınavda birinci oldu. Bir yıl sonra da Matematik’te Master çalışmasına başladı.

Marie yirmiyedi yaşına gelmişti. Çalıştığı laboratuarda araştırma yapan genç bilim adamı Pierre Curie ile tanıştı. Pierre de olağanüstü bir yetenekti: Daha onaltı yaşında iken üniversiteyi bitirmiş, onkesiz yaşında fizikte master derecesi almıştı. Elektrik ve manyetizma alanındaki araştırmalarıyla daha genç yaşta dikkatleri çekmeye başlamıştı. Yaşamını bilime adamış Pierre karşı cinse önyargıyla bakmaktaydı.

Ona göre, “dahi” diyebileceğimiz kadın yok denecek kadar azdı. “Sıradan kadın ise ciddi kafalı bilim adamı için bir ayak bağı olmaktan ileri geçmez,” diyordu. Genç bilim adamı otuzbeş yaşındaydı.

Marie ile karşılaşıncaya dek deneyimleri hiç de olumlu olmamıştı. Şimdi “yok denecek kadar az” dediği kadını bulmuştu. Araştırmalarını yan yana aynı alanda sürdüren Marie ile Pierre, yalnız yaşamlarını değil, bilimsel uğraşlarını da birleştirmekte gecikmediler.

Bu bilimsel buluşların biribirini izlediği bir dönemdi. Almanya’da Röntgen “X-ışınları” dediği katı cisimlerden bile geçen çok güçlü bir ışın keşfetmişti. Fransa’da ise yoğun çalışmalarıyla ünlü fizikçi Becquerel gündemdeydi. Becquerel, deneylerine dayanarak uranyum maden filizinde uranyum dışında başka bir elementin daha bulunduğu kanısındaydı; düşüncesini deney becerisine hayranlık duyduğu Marie Curie’ye iletti.

Sorunu eni konu irdeleyen karı koca Curie’ler söz konusu elementin bilinen bir element değil, yeni bir element olduğu sonucuna ulaştılar ve ellerindeki araştırmalarını bir yana iterek çok ilginç buldukları bu soruna açıklık getirmeye koyuldular.

Uranyum maden filizi pahalı bir meta idi; o zaman yalnızca bir ülkeden (Avusturya’dan) sağlanabilirdi. Curie’ler kısıtlı mali olanaklarıyla filizi olduğu gibi değil, uranyumu alınmış kalıntısını satın alabilirlerdi ancak. Becquerel gibi onlar da yeni elementin kalıntıda olduğuna emindiler. Avusturya hükümeti istenen kalıntıyı taşıma ücreti pahasına göndermeyi kabul etti.

Curie’ler tonlarca uranyum filiz kalıntısını laboratuvar diye hazırladıkları derme çatma ahşap barakalara yığdılar. Bundan sonrası, bilim tarihinin bildiğimiz en yorucu ve yıpratıcı araştırma uğraşıydı. İşe kalıntıyı ocak üzerinde kocaman kazanlarda kaynatıp arındırma işlemiyle başlandı. Eriyik, sürekli karıştırılarak filtreden geçirildi. Kapalı yerde çıkan gaz çoğu kez dayanılamayacak yoğunlukta olduğundan kazanlar, hava koşulları elverdiğinde, üstü açık avluya taşınıyordu.

1896 yılı boyunca kaynatma, süzme işi aralıksız sürdürüldü. Yorgun düşen Marie kışın gelmesiyle zatürreeye yakalanıp yatağa düştü; üç ay iş tümüyle Pierre’in omuzlarında kaldı. İki yıl süren süzme ve arındırma sonunda az miktarda bizmut bileşiği elde edildi. Bu bileşimin uranyumdan 300 kat daha aktif olduğu göz önüne alındığında bu bile küçümsenecek bir basan değildir. Üstelik, bu, bizmut bileşiminde bilinen elementlerden başka bir şeyin daha olduğu demekti.

Marie var gücüyle bu bilinmeyen şeyi ortaya çıkarmaya koyulabilirdi artık. 1898′de Marie ülkesinin adıyla andığı “Polonyum” elementini bulduklarını açıkladı. Ne var ki, sorun henüz tam çözülmüş değildi; çünkü, polonyum çıkarıldıktan sonra geri kalan posanın çok daha güçlü olduğu görüldü. Süzme ve arındırma işi bitmemişti. Curie’lerin yılmadan, usanmadan sürdürdükleri çetin uğraş, sonunda hedefine ulaştı: Işın etkinliği yüksek radyum elementi bulundu.

Radyum gerçekten bulunması yolunda verilen tüm emek ve zamana değen ilginç bir elementtir. Radyoaktifliği uranyumdan yaklaşık bir milyon kat daha fazladır. Fotoğraf filmi üzerinde ışığa duyarlı maddeyi, film ışık geçirmez kağıda sarılı olsa bile, kolayca etkiler. Havadaki gazların moleküllerini iyonize ederek gazların elektrik taşımasını sağlar; ayrıca, diğer bileşimlerle karıştırıldığında floresans üretme gücüne sahiptir. Radyum ışınları tohumların büyümesini önleyebilir; bakterileri, dahası küçük hayvanları öldürebilir. Bu ışınların bugün kanserin ve bazı deri hastalıklarının tedavisinde kullanıldığını biliyoruz. Radyumun bir özelliği de, enerji saldıkça kendini tüketmesi, basit atomlara dönüşmesidir.

Sanayi çevrelerinden gelen ısrarlı taleplere karşın, buluşlarını satma yoluna gitmeyen Curie’ler, 1903′de fizikte Nobel Ödülü’nü Becquerel ile paylaştılar. Böylece uzun yıllar biriken araştırma masraf borçlarını ödeme olanağına kavuştular.

Pierre Curie Sorbonne’a profesör olarak çağrıldı. İki çocuklu aile artık daha rahat ve mutlu bir yaşam içindedir. Ne yazık ki, aileyi, mutsuzluğa gömen bir trafik kazası bekliyordu: 1906′da Pierre Curie bilimsel bir seminerden çıkıp evine yürürken atlı bir arabanın altında kaldı, kaza yerinde yaşamını yitirdi.

Dünyası bir anda kararan Marie kurtuluşu tekrar laboratuara dönmekte buldu. Her gece uykuya yatmadan o günkü çalışmasını yazdığı bir mektupla artık birlikte olmadığı kocasıyla paylaşmak istiyordu. Kimi çevrelerin karşı çıkmasına karşın, Fransa yerleşik normları bir yana iterek Marie Curie’ye kocasından boşalan kürsüyü önerdi. Öğretim göreviyle birlikte araştırma etkinliğini de sürdüren bayan profesör, radyumu yalın biçimiyle elde etmeyi başardı. 1911′de ikinci kez Nobel Ödülü’nü aldı.

1934′de öldüğünde, ünlü bilim kadınının yıllarca radyum ışınlarının etkisinde kalan iç organlarının nerdeyse tümüyle yıkım içinde olduğu görüldü. Keşfettiği radyum bir bakıma ondan öcünü almıştı.

 

Ernest Rutherford

(1871 -1937) Yüzyılımızın başında bilimde yer alan büyük devrimsel atılımlar genellikle “Planck” ve “Einstein’ın adlarıyla bilinir. Oysa onların kuramsal atılımlarının yanısıra, sonuçları bakımından son derece önemli deneysel çalışmalar da vardır. Bunların başında, Marie Curie ve Ernest Rutherford’un radyoaktivite üzerindeki çalışmaları gelir.

Rutherford, dış görünümüyle bir bilimadamından çok bir “çiftlik kâhyası” ya da bir “aşiret reisi”ni andırmaktaydı. Esmer, irikıyım yapısı, gür sesi ve pos bıyığıyla yabanıl ve ürkütücü; her yönüyle heybetli bir kişiydi. Laboratuvarında bir şey tersine gitmesin; kükreyen sesi ortalığı sarsar, asistanlar suspus olurlardı. Oysa bu kızgınlık gelip geçiciydi; onun hiç bir yapmacığa kaçmayan anlık sert davranışlarının gerisinde sıcak, sevecen yaradılışı saklıydı.

Ernest, Yeni Zelanda’da küçük bir çiftlikte dünyaya gelmiştir. İskoç göçmeni olan babası, araba tamircisiydi. Ernest, yoksul ve kalabalık bir ailenin içinde büyüdü. Ne var ki, daha küçük yaşta sergilediği olağanüstü öğrenme merakı ona çevredeki en iyi okulların kapısını açtı. Özellikle üniversitedeki parlak başarısıyla dikkatleri çekti ve kazandığı burs, bilim ateşiyle yanan delikanlının yaşamında yeni bir dönemin başlangıcı oldu. 1894′de, Cambridge Üniversitesi ünlü fizik bilgini J. J. Thomson’un yanında çalışmak üzere İngiltere’ye geldi.

Üniversiteye bağlı Cavendish Laboratuvarı’ndaki ilk yılını radyo dalgaları, ikinci yılını yeni keşfedilmiş olan X-ışınları üzerindeki çalışmalarla geçirdi. Sonra, yaşam boyu uğraş konusu olan radyoaktivite üzerindeki araştırmalarına koyuldu. Adı kısa zamanda bilim çevrelerinde duyulan Rutherford’u 1898′de, Kanada’da McGill Üniversitesi, fizik profesörlüğüne çağırdı. Genç bilimadamı beklenmedik bu çağrı karşısında bir ikilem içine düştü: Bir yanda erişilmesi güç, saygın bir unvan, öte yanda araştırma ortamı olarak bulunmaz nimet saydığı Cavendish Laboratuvarı.

Rutherford 27 yaşındaydı. Kısıtlı bursu ile nişanlısını İngiltere’ye aldırtamaması bir yana; kendi yolculuğu nedeniyle yaptığı borcu bile ödeyemiyordu. Aldığı öneri ona bu olanakları da sağlayacaktı. Rutherford, sonunda ister istemez çağrıyı kabul etti. Karar isabetliydi: McGill’de geçirdiği yaklaşık on yıl içinde hem radyoaktif atomların kendiliğinden değişik nitelikte atomlara dönüştüğünü ispatlayarak Nobel Ödülü’nü kazandı; hem de atomun yapısına ilişkin olarak aranan açıklığı getiren çekirdek buluşunu ortaya koydu.

Birbirini izleyen başarılarına değinen bir meslekdaşı, “Sen gerçekten çok şanslı birisin: hep dalganın tepesinde seyrediyorsun,” diye takıldığında, Rutherford’un yanıtı kısa ve çarpıcı olmuştur: “Unutma, o dalgayı ben kendim yarattım. ” Alçakgönüllülük bir yana, Rutherford çoğu kez insanları küçümserdi. Ona göre, bilim ya fizikti, ya da pul koleksiyonculuğu. Ama Nobel Ödülü’nü fizikten değil, küçümsediği kimyadan almıştı. Hatırlatılınca, elementler gibi kendisinin de transmutasyona uğradığını söyleyerek, işi şakayla geçiştirirdi.

1887′de J. J. Thomson’un elektronu keşfetmesiyle, bilim dünyası yeni bir problemle karşı karşıya kalmıştı. Negatif elektrik yüklü elektronlar, hidrojen atom kütlesinin ikibinde biri kadardı; oysa hidrojen, en basit madde türü olarak biliniyordu. Üstelik Thomson, hangi elemente ait olursa olsun, atomların özdeş parçacıklar saldığı görüşündeydi. Bu da elektronların, sözü geçen parçacıkların bir bölümü olduğu anlamına gelmekteydi. Yanıtlanması gereken soru şuydu: Atomlar eskiden sanıldığı gibi basit, bölünmez birimler değilse, atomun yapısal özelliği ne olabilirdi?

Thomson, atomun, içinde elektron taşıyan pozitif elektrik yüklü top biçiminde bir madde olduğunu ileri sürmüştü. Başka bir deyişle, atom basit değildi; ama katı, yoğun bir madde olmanın ötesinde birşey de değildi.

Rutherford’un radyoaktiviteye ilişkin ilk önemli buluşu, “alfa” ve “beta” dediği iki değişik ışının varlığını belirlemesiydi. Ayrıca, asistanı Soddy ile birlikte bir elementin bir başka elemente dönüşümünde radyoaktivitenin rolünü, deneysel olarak kanıtlamıştı.

1907′de McGill’den Manchester Üniversitesi’ne geçtiği zaman ilk ele aldığı problem atomun yapısıydı. Araştırmasında, beta parçacıklarından sekizbin kat daha yoğun olan alfa parçacıklarının işe yarayacağını düşündü. Hans Geiger ve Ernest Marsden adlı iki asistanını, alfa parçacıklarının ince bir altın yaprağına çarptığı zaman nasıl dağıldıklarını incelemekle görevlendirdi. Alman sonuç beklentiye hiç de uygun değildi. Parçacıkların büyük çoğunlukla altın yapraktan doğrudan geçtiği gözlenmişti. Sanki altın yaprağın yapısında geçişi engelleyen hiç bir atom yoktu! Ama gözden kaçmaması gereken durum, yaprağa çarpan alfa parçacıklarının yaklaşık 20. 000′de birinin geri sapmasıydı. Bu ne demekti?

Uzun bir bocalamadan sonra Rutherford bu gözlemin, atomun yapısına ilişkin ipucu verdiğini gördü: Atomun kütlesi neredeyse tümüyle, kapsamında son derece küçük bir yer tutan pozitif elektrik yüklü bir çekirdekte toplanmış olmalıydı. Çekirdeğin çevresinde hızla dönen elektronlar ise pozitif yükü dengeleyen negatif yüklü daha küçük parçacıklardı. Kısacası atom güneş sistemine benzer bir düzen sergilemekteydi. Alam büyük ölçüde boş bir atom gözönüne alındığında, alfa parçacıklarının neden büyük bir çoğunlukla, hiç bir engelle karşılaşmamış gibi altın yapraktan geçtikleri açıklık kazanmaktaydı.

Mikroskopla görülebilen nesnelerden bile küçük olan atomdan daha da küçük olan çekirdek ve elektron gibi parçacıkları hayalde canlandırmak kolay değildir. Rutherford’un modelini çizdiği atomu bir futbol stadyumu büyüklüğünde düşünürsek, çevresinde birkaç sineğin döndüğü çekirdek, bu alanda bir golf topu büyüklüğünde olacaktır.

Rutherford, kuramcı bir bilimadamı değildi: Ona göre, her problemin çözümü deney sonuçlarıyla sınırlı tutulmalıydı. Öyle ki, ortaya koyduğu atom modelinin kuramsal açıklama gerektiren önemli bir sonucuna duyarsız kalmıştı. Üstelik atom modeline ilişkin deneysel kanıtları, yerleşik fizik yasalarıyla da tam bağdaşır değildi.

Örneğin, negatif yüklü elektronlar belirtildiği gibi gerçekten çekirdek çevresinde hızla dönüyorlarsa, bunların da devinen diğer elektrik yükleri gibi, radyasyon oluşturmaları gerekirdi. Bir elektrik yükünün, antende yukarı ve aşağı hareket ettirildiğinde radyasyon üretmesi buna bir örnektir. Çekirdek çevresinde dönen elektron, gerçekten radyasyon çıkarsaydı, çok geçmeden yavaşlayıp çekirdeğe kapanması ve atomun tümüyle çökmesi beklenirdi (Soruna kuramsal açıklamayı ortaya koyan kişi, daha sonra Rutherford’un seçkin öğrencisi olan Niels Bohr’dur).

Rutherford 1908′de Nobel Ödülü’nü, 1914′de “Lord” unvanını aldı. 1919′da Cavendish Laboratuvarı’nın başına geçti. Cavendish onun yönetiminde çok geçmeden dünyanın başta gelen deneysel fizik merkezi oldu. Burada giriştiği ilk çalışmalardan biri, yine alfa parçacıklarını kullanarak bir elementin başka bir elemente yapay dönüşümünü gerçekleştirmek oldu.

Deneyde, alfa parçacıklarının, nitrojen atomları gibi daha hafif atom çekirdeklerine çarptırıldıklarında, geriye sapmaksızın çekirdekle kaynaştıkları ve nitrojen atomunun oksijen atomuna dönüştüğü görülür. Bu süreçte başka bir parçacığın ortaya çıktığını saptayan Rutherford, çekirdeğin temel taşı saydığı pozitif yüklü bir parçaya “proton” adını verdi.

Kütlesi bakımından diğerlerine benzeyen, ama elektrik yükü olmayan üçüncü bir parçacık daha söz konusuydu (“Nötron” denen bu parçacığı Rutherford’un asistanı James Chadwick 1932′de bulur). Bu, bilimsel araştırmaya bol paranın henüz akmadığı bir dönemdi. Cavendish’te bile deneyler, “derme çatma” denebilecek basit araçlarla sürdürülüyordu.

Rutherford’u ziyarete giden tanınmış bilim yazarı Ritchie Calder, gördüklerini şöyle anlatmıştı: “Konuşmamız sürerken bir ara, işlerin nasıl yürüdüğünü görmek ister misiniz?’ diyerek kolumdan tuttu, beni laboratuvarın yüksek voltaj bölümüne götürdü. Karanlık denilebilecek bir odaya girmiştik; yapay bir şimşek çakıp duruyordu. Sonra parçalanan atomları kaydeden bir sayacın tıkırtı seslerini duyduk. ‘Atom parçalayıcı’ dedikleri bir makinenin önündeydik; günümüzdeki yüksek voltaj akseleratörleriyle karşılaştırıldığında son derece ilkel kalan bir makine!

Rutherford ve ekibi işte bu araçlarla çalışıyorlardı. ‘Paramız olmadığı için kafamızı kullanmak zorundayız,’ diyordu Rutherford. O, yalnız araçlarının basitliğiyle değil, bilime yaklaşımındaki basit tutumuyla da övünç duymaktaydı. ‘Kendim çok basit olduğum için,’ diyordu, ‘doğanın da temelde basit olduğuna inanıyorum’ “.

Rutherford, bir dizi seçkin fizikçi yetiştirmekle kalmadı, onlara büyük bir esin kaynağı da oldu. Nükleer fizik onun dünyasıydı. Bu alandaki öndeyilerinden pek azı yanlış çıkmıştır. Yanılgılarından biri, çekirdekteki saklı enerjinin sürgit kilitli kalacağı inancıydı. Ölümünden çok değil iki yıl sonra bu enerjinin atom bombasına dönüştürülebileceğine artık kesin gözüyle bakılıyordu. Neyse ki, şansı bir kez daha yüzüne gülmüştü: Hiroşima’daki korkunç patlamayı duymayacaktı.

 

Albert EInsteIn

Albert Einstein (18791955) , Yahudi asıllı Almanyalı fizikçi. 20. yüzyılın en önemli kuramsal fizikçisi olarak nitelenen Albert Einstein, Görecelik kuramını geliştirmiş, kuantum mekaniği, istatistiksel mekanik ve kozmoloji dallarına önemli katkılar sağlamıştır. Kuramsal fiziğine katkılarından ve fotoelektrik etki olayına getirdiği açıklamadan dolayı 1921 Nobel Fizik Ödülü‘ne layık görülmüştür. (Nobel Ödülü’nün ve Nobel Komitesi’nin o zamanki ilkeleri doğrultusunda, bugün en önemli katkısı olarak nitelendirilen Görecelik kuramı fazla kuramsal bulunmuş ve ödülde açıkça söz konusu edilmemiştir. )

Ünlü Einstein, 1879 yılında Güney Almanya’nın Ulm kentinde dünyaya geldi. Babası Einstein & Cie adında bir elektrik fabrikası sahibi; annesi ise, klasik müziğe meraklı, eğitimli bir ev hanımıydı. Konuşmaya geç başlaması ve içine kapanık bir çocuk olması, ailesini tedirginliğe düşürmüşse de, sonraki yıllarda sağlıklı bir çocuk olduğu anlaşıldı. 1880 de ailesiyle Münih‘e taşındı. Babası Hermann ve abisi Yakob burada Einstein&cie adında elektrik mühendisliği ile bir şirket kurdular. 1894 yılında ailesin iflası nedeni ile İtalya‘ya taşındılar

Einstein: buluş ve çalışmalarındaki esin kaynağını ise kendisi: “Çocukluğumda yaşadığım iki önemli olayı unutamam. Biri, beş yaşında iken amcamın armağanı pusulada bulduğum gizem; diğeri on iki yaşındayken tanıştığım Öklit geometrisi. Gençliğinde bu geometrinin büyüsüne kapılmayan bir kimsenin, ileride kuramsal bilimde parlak bir atılım yapabileceği hiç beklenmemelidir!” sözleri ile açıklamıştır.

“Okula gitmem neden gerekiyor, babacığım?” Sert görünüşlü baba, sekiz yaşındaki oğlunu tepeden süzdü.

“Albert, kara cahil biri olarak mı büyümek istiyorsun, yoksa?”

“Kara cahil de ne demek?”

İyi döşenmiş geniş salonun öbür ucundan bir kahkaha yükseldi. Baba ile oğul, birlikte, büyük piyano başındaki anneye döndüler.

“Ah Hermancığım, bilmiyor musun, o oyunda Albert’le başa çıkamayacağını?”

“Doğrusunu istersen, ne demek istediğini anlayamıyorum. ” diye kekeledi kocası. Eski bir Macar halk şarkısını çalmayı sürdüren bayan Einstein,

“Haydi, haydi, bilmezlikten gelme. Bilmiyor muyum sanki Albert’i soru sormaktan vazgeçirmek için sorusuna soruyla yanıt vermek taktiğini!” Ama görüyorsun ya, yürümüyor!” dedi.

Albert seğirterek annesinin yanına gitti; tuşlar üzerinde kayan usta parmaklar ona bir anda ne sorduğunu unutturmuştu. Piyano şarkı söylüyordu, adeta! İki tuşa sert bir vuruşla çalmasını noktalayan anne, taburesinde döndü, oğlunu kolları arasına aldı. Albert’in koyu gür, dalgalı saçlarının üstünden kocasına gülümsedi: – “Görüyorsun ya, Albert’i soru sormaktan alıkoymanın bir yolu vardır: benim müziğim!”

Baba da gülümsedi; bir şey demeğe kalmadan, oğlan annesinin kucağında dönerek,

“Soru sormak kötü bir şey mi?” diye sordu. Bu kez gülme sırası babasındaydı:İşte sana! Boşuna övünme, senin müziğinin de onu durduracağı yok. “

Anne kocasını duymazlıktan gelerek, oğluna döndü:”Soru sormanın hiçbir kötü yanı yok, tatlım. Yeter ki, soruların karşındakini küçük düşürmeye ya da kırmaya yönelik olmasın!”

“Ama ben öyle bir şey yapmıyorum, anneciğim. Bilmediğim o kadar çok şey var ki, sorarak öğrenmek istiyorum; her şeyi öğrenmek istiyorum. “

Anne gururla gülümsedi; baba ise biraz duraksamalı, – “Peki, dediğin gibi gerçekten her şeyi öğrenmek istiyorsan yavrum, okula neden gitmen gerektiğini nasıl sorabilirsin? Okul soruların yanıtlandığı yer değil midir?” diye araya girdi.

“Değildir, babacığım!” dedi çocuk. “Yanıtlamak şöyle dursun, soru bile sordurmuyorlar, insana. Okuldan hoşlanmıyorum. Hapishanedeymişim gibi sanki. Öğretmenler gardiyanlardan farksız; sıralar arasında gidip gelen gardiyanlar!”

Karı koca birbirlerine tedirgin gözlerle bakıştılar. Albert’in bu suçlamalarına ne diyebilirlerdi ki. . .

İşte her şeyi sorgulayan bu çocuk, ilerde büyük bilimsel atılımların yanı sıra özentisiz, erdemli bilge kişiliğiyle de tüm dünyanın ilgi odağı olacaktı.

Albert Einstein, Güney Almanya’nın Ulm kentinde dünyaya geldi. Küçük bir elektrokimya fabrikasının sahibi olan babası başarılı bir iş adamı değildi. Annesinin dünyası müzikti; özellikle Beethoven’in piyano parçalarını çalmak en büyük tutkusuydu. Aile Musevî kökenliydi, ama dinsel bağnazlıktan uzak, açık görüşlü, kültürel etkinliklerle zengin bir yaşam içindeydi. Ne var ki, çocuğun ilk yıllardaki gelişmesi kaygı vericiydi. Özellikle konuşmadaki gecikmesi aileyi telaşa düşürmüştü.

Albert, içine kapanıktı; çocukların arasına katılmaktan, oyun oynamaktan hoşlanmıyordu. Okulu sıkıcı buluyor, ezbere dayanan eğitim disiplinine katlanamıyordu. “Gimnazyum”da geçen orta öğrenimi mutsuz ve başarısızdı. Mühendis amcasının özel ilgisi olmasaydı, belki de öğrenimden tümüyle kopacaktı. Amca, yeğene cebir ve geometriyi sevdirdi. Geometri özellikle Albert’i bir tür büyülemişti.

Einstein, yıllar sonra amcasına borcunu şöyle dile getirir: “Çocukluğumda yaşadığım iki önemli olayı unutamam. Biri, beş yaşımda iken amcamın armağanı pusulada bulduğum gizem; diğeri on iki yaşımda iken tanıştığım Öklit geometrisi. Gençliğinde bu geometrinin büyüsüne girmeyen bir kimsenin ilerdi kuramsal bilimde parlak bir atılım yapabileceği hiç beklenmemelidir!”

Einstein, yüksek öğrenimini güç koşullara göğüs gererek Zürih Teknik Üniversitesi’nde yapar. Mezun olduğunda iş bulmak sorunuyla karşılaşır. Üniversitede asistanlık bir yana orta okul öğretmenliği bile bulamaz. Sonunda bir okul arkadaşının yardımıyla Bern Patent Ofisi’nde sıradan bir işe yerleşir; ama asıl dünyası olan bilimden kopmaz; çok geçmeden büyüsü bugün de süren devrimsel atılımlarıyla yaratıcı dehasını kanıtlar. 1905′te Annalen der Physik dergisinde yayımlanan üç çalışmasının her biri, fizik tarihinde bir dönüm noktası sayılabilecek nitelikteydi.

Bunlardan biri, şimdi “fotoelektrik etki” dediğimiz bir olaya ilişkindi. Newton, ışığı tanecikler akımı, kimi bilim adamları ise dalga devinimi diye nitelemişti. Aslında ışığın davranışını açıklamada iki kuramın birbirine bir üstünlüğü yoktu; ancak, Newton’un adı parçacık kuramına bir tür ağırlık sağlamaktaydı.

Ne var ki, 19. yüzyılın başlarında Young’la başlayan, Fresnel ve daha sonra Faraday ve Maxwell’in çalışmalarıyla pekişen deneyler dalga kuramına belirgin bir üstünlük sağlamıştı. Einstein’ın fotoelektrik çalışması bu gelişmeyi bir bakıma tersine çevirmekle kalmaz, Planck’ın 1900′de ortaya sürdüğü kuantum teorisini de çarpıcı bir biçimde doğrular.

Daha az bilinen ikinci çalışma “Brown devinimi” denen bir olayı açıklıyordu. 1850′lerde İngiliz botanikçisi Robert Brown, mikroskopla polenleri incelerken, taneciklerin su içinde gelişigüzel sıçramalarla devinim içinde olduğunu gözlemlemişti. Ancak bu gözlem 1905′e dek açıklamasız kalır.

Einstein’ın bugün de geçerliliğini koruyan açıklaması oldukça basittir: Son derece hafif olan polenlerin ani kımıltıları, su moleküllerinin çarpmalarıyla oluşuyordu. Gerçi molekül kavramı yeni değildi; ancak en güçlü mikroskop altında bile görülemeyecek kadar küçük olan moleküllerin varlığı ilk kez bu açıklamayla kanıtlanmış oluyordu.

Yüzyılımızın başında Ernst Mach gibi kimi seçkin fizikçilerin bile gözlemsel kanıt yokluğu gerekçesiyle atom teorisine uzak durdukları bilinmektedir. Öyle ki, bu olumsuz tutum, gazların kinetik teorisinin kurucusu Boltzman’ı intihara sürükleyecek kadar ileri gitmişti. Einstein’ın açıklaması, bu tutuma son vermekle fiziğin içine düştüğü bir tıkanıklığı giderir.

1905′in bilim dünyasına yeni bir ufuk açan üçüncü ve en önemli çalışması, Özel Görecelik (Special Relativity) kuramıdır. Bu kuram, Einstein’ın genç yaşında kendini gösteren bir merakına dayanır. Daha on dört yaşında iken Einstein, “Bir ışık ışınına binmiş olsaydım, dünya bana nasıl görünürdü, acaba?” diye sormuştu.

19. yüzyılın sonlarında ışığın hızına ilişkin Michelson-Morley deneyi, bu merakı derinleştiren bir sorun ortaya koymuştu: Ses ve başka dalga olaylarının, tersine ışık hızının referans sistemine görecel olmayışı! Saatte 100 km hızla ilerleyen bir lokomotifin, iki istasyon arasında düdük çaldığını düşünelim. Sesin ön ve arka istasyonlara değişik hızlarla ulaşacağını biliyoruz: Öndeki istasyona normal ses hızından saatte 100 km daha fazla, arkada kalan istasyona ise saatte 100 km daha yavaş bir hızla ulaşır. Oysa trendeki insanlar için sesin hızında bir değişiklik yoktur; ön ve arka uçlara normal hızıyla aynı anda ulaşır. Sesin hızı gözlemcinin hızına göreceldir.

Işığa gelince Michelson Morley deneyleri, ışığın öyle davranmadığını göstermekteydi. Işık kaynağı ile gözlemcinin birbirine görecel hareketlerine ne olursa olsun ışık hızında bir değişiklik gözlemlenmemekteydi. Bu beklenmeyen bir sonuçtu; çünkü, sesin hava aracılığıyla yayıldığı gibi, ışığın da “esir” denen gizemli bir ortam aracılığıyla yayıldığı ve gözlemcinin hareketine bağlı olduğu sanılıyordu. Esir gözlemlenebilir bir nesne değildi; ama öyle bir kavram olmaksızın optik olgular nasıl açıklanabilirdi? Kaldı ki, Maxwell’in elektromanyetik teorisi de esir türünden bir ortam varsayımına dayanıyordu.

Einstein’ın getirdiği çözüm, deney sonuçlarını yansıtan şu iki temel ilkeyi içermektedir.

1) Doğa yasaları ivmesiz hareket eden tüm sistemler için aynıdır;

2) Işığın hızı, kaynağına göre hareket halinde olsun veya olmasın, her gözlemci için aynıdır.

Özel Görecelik Kuramı’nın öncüllerini oluşturan bu iki temel ilke, yeterince anlaşılmadıkça, Einstein devrimini kavramaya olanak yoktur. Kuramın içerdiği tüm önermeler, bu öncüllerin mantıksal sonuçlarıdır. Aslında deneysel nitelikte olan bu iki ilkenin yol açtığı kuramsal devrim, ilk bakışta şaşırtıcı görünebilir. Ama sonuçlarına bakıldığında şaşkınlık, yerini büyük bir hayranlığa bırakmaktadır.

Sonuçlardan biri, bir gözlemciye bağıl olarak nesnelerin hareketleri yönünde uzunluklarının kısaldığı, kütlelerinin arttığı öndeyişidir. Örneğin, bir topu ışık hızına yakın (yakın, çünkü kurama göre ışık hızını yakalamaya ve aşmaya olanak yoktur) bir hızla uzaya fırlattığımızı varsayalım: Hareket dışındaki bir gözlemci için top bir tepsi gibi yassılaşırken, kütlesi büyük ölçüde artar. Hızı kesildiğinde top, önceki biçim ve kütlesine döner.

Kurama göre hızı ışık hızına erişen bir nesnenin oylumu sıfır, kütlesi sonsuz olur. Ancak öyle birşey düşünülemeyeceğinden, hiçbir nesnenin ışık hızıyla hareketi beklenemez. Başka bir deyişle, kütle eyleme direnç demek olduğundan, kütlenin sonsuzlaşması hareketin yok olması demektir.

Daha az şaşırtıcı olmayan bir sonuç da, zamanın görecelliği. Örneğin, birbirine tam ayarlı iki saatten birini çok hızlı bir roketle uzaya yolladığımızı düşünelim. Bu saatin yerdeki saate göre daha yavaş çalıştığı görülecektir. Roket saniyede yaklaşık 260,000 km hızla yol alıyorsa, yerdeki saatin yelkovanı iki tam dönüş yaptığında roketteki saatin yelkovanı ancak bir tam dönüş yapacaktır. Oysa rokette bulunan gözlemci için öyle bir yavaşlama söz konusu değildir; saat normal hızıyla çalışmaktadır. Ne var ki, bu kişi dünyaya döndüğünde kendisini karşılayan ikiz kardeşini daha yaşlanmış bulacaktır.

Kuramdan matematiksel olarak çıkan bu sonuçlar daha sonra deneysel olarak doğrulanmıştır.

Kuramın belki de en önemli (atom bombası nedeniyle en çok bilinen) bir sonucu da madde ve enerji eşdeğerliliğine ilişkin denklemdir: E=mc2 (Denklemde E enerji, m kütle, c ışık hızı olarak kullanılmıştır).

Başlangıçta bu ilişkinin önemi yeterince kavranmamıştı. Einstein’ın denklemi içeren yazısını yayımlamakta güçlükle karşılaştığını biliyoruz. Oysa küçük bir kütlenin büyük bir enerji demek olduğunu ortaya koyan bu denklem yıldızların (bu arada Güneş’in) ışığı nasıl ürettiğini de açıklamaktaydı.

Kuramın evren anlayışımız yönünden de kimi sonuçları olmuştur. Bunlar arasında en önemlisi, hiç kuşkusuz uzay ve zaman kavramlarını birleştiren dört boyutlu uzay zaman kavramıdır.

Özel Görecelik kuramı düzgün doğrusal (ivmesiz) hareket eden sistemlerle sınırlıydı. Einstein’ın 1915′te ortaya koyduğu Genel Görecelik kuramı ise birbirine göre hızlanan veya yavaşlayan (yani ivmeli hareket eden) sistemleri de kapsıyordu. Öyle ki, birinci kuramı, kapsamı daha geniş ikinci kuramın özel bir hali sayabiliriz.

Özel Görecelik, Newton’un mekanik yasalarını değiştirmişti. Genel Görecelik daha ileri giderek “gravitasyon” kavramına yeni ve değişik bir içerik getirmekteydi. Klasik mekanikte gravitasyon, kütlesel nesneler arasında çekim gücü olarak algılanmıştı. Buna göre, örneğin bir gezegeni yörüngesinde tutan şey, kütlesi daha büyük Güneş’in çekim gücüydü.

Oysa, Genel Görecelik kuramına göre, gezegenleri yörüngelerinde tutan şey Güneş’in çekim gücü değil, yörüngelerin yer aldığı uzay kesiminin Güneş’in kütlesel etkisinde oluşan kavisli yapısıdır. Öyle bir uzay yapısında, nesnelerin başka türlü hareketine fiziksel olanak yoktur. Genel kuram, ayrıca gravitasyon ile eylemsizlik ilkesini “gravitasyon alanı” adı altında tek kavramda birleştiriyordu.

Bu noktada Einstein’ın, Maxwell’in “elektromanyetik alan” kavramından esinlendiği söylenebilir. Nitekim tanınmış bilim tarihçisi I. B. Cohen’in bir anısı bunu doğrulamaktadır: “Ölümünden iki hafta önce Einstein’ı ziyarete gitmiştim. Sekreter beni çalışma odasına aldı. İki duvar döşemeden tavana kitaplıktı. Bir duvar geniş penceresiyle bahçeye bakıyordu; diğerinde iki tablo asılıydı: Elektromanyetik teorinin kurucuları Faraday ile Maxwell’in portreleri!

Genel Görecelik kuramının tüm mantıksal yetkinliğine karşın, hemen benimsenmesi bir yana anlaşılması bile kolay olmamıştır. Eddington’a, “kuramı yalnızca üç kişinin anlayabildiği söyleniyor, doğru mu?” diye sorulduğunda, ünlü astrofizikçi bir an duraklar, sonra “üçüncü kişinin kim olduğunu düşünüyordum. ” der.

Bir kez, Özel kuramın tersine Genel kuram, fizikte çözümü istenen herhangi bir soruna yönelik bir arayışın ürünü değildi. Sonra, kuramı doğrulayan gözlemsel bir kanıt henüz ortada yoktu; üstelik, 1915′in teknolojik olanakları kuramın deneysel yoklanması için yeterli değildi. Kuramın öndeyilerinden yalnızca biri yoklanmaya elveriyordu; ancak içinde bulunulan savaş koşulları bunu da güçleştirmekteydi.

Einstein, kuramından öylesine emindi ki, deneysel yoklamada ortaya çıkacak olumsuz herhangi bir sonucu kuramın yanlışlığı için yeterli sayacağını bildirmekten kaçınmıyordu.

Olgusal yoklanmaya elveren öndeyi şuydu: kuram doğruysa, Güneş’in gravitasyon alanından geçen bir ışık ışınının, eğrilmesi gerekirdi. Bu etkiyi gündüz aydınlığında belirlemeğe olanak olmadığı için, Güneş’in tutulmasını beklemekten başka çare yoktu.

Astronomlar Güneş’in 1919 Mayıs’ında tutulacağını, gözlem bakımından en uygun yerin Afrika’nın batısında Prens Adası olabileceğini bildirmişlerdi. Eddington’un önderliğinde bir grup bilim adamının gerçekleştirdiği gözlem ve ölçmeler öndeyiyi doğrulamaktaydı. Sonuç İngiliz Kraliyet Bilim Akademisi tarafından açıklanır açıklanmaz bilim dünyası bir tür büyülenir; Einstein, Newton düzeyinde bir yücelik simgesine dönüşür.

Kuram daha sonra başka gözlemlerle de doğrulanmıştır. Bunlardan biri açıklanmasında klasik mekaniğin yetersiz kaldığı bir olaya (Merkür gezegeninin perihelisinin kaymasına), bir diğeri, Güneş (ve diğer yıldız) atomlarının saçtığı ışığın frekans düşüklüğü nedeniyle spektral çizgilerin spektrumun kırmızı ucuna doğru kayması olayına ilişkindir.

Özel Görecelik kuramı gibi Genel Görecelik kuramının da ilk bakışta çelişik görünen ilginç sonuçları vardır. Örneğin, kurama göre, evren büyüklük bakımından sonlu ama sınırsızdır. Gene kuram evrenin giderek ya büyümekte ya da küçülmekte olduğunu içermektedir (Nitekim yıldız kümeleri üzerindeki gözlemler evrenin büyümekte olduğunu göstermiştir).

Einstein, bu kuramıyla da yetinmez; yaşamının son otuz yılını daha da kapsamlı bir kuram oluşturma çabasıyla geçirdi. Evrende olup bitenleri bir tek ilke altında açıklamak, insanoğlunun, kökü klasik çağa inen değişmez bir arayışıdır. Thales tüm varlığı suya, Pythogoras sayıya indirgeyerek açıklamaya çalışmıştı.

Modern çağda Oersted, Faraday ve Maxwell’in elektrik ve manyetik güçleri özdeşleştirme yoluna gittiklerini görüyoruz. Einstein’ın da ömür boyu süren düşü buna yönelikti: Doğanın tüm güçlerini (gravitasyon, elektrik, manyetizma, vb. ) “birleşik alanlar” dediği temel bir ilkeye bağlamak. Bu düşün gerçekleştiği söylenemez belki; ama Einstein, çağdaş fiziğin egemen akımı dışında kalma pahasına, umudundan hiçbir zaman vazgeçmez. Evrenin nedensel düzenliliği onda bir tür dinsel inançtı. “Seçeneğim kalmasa, doğa yasalarına bağlı olmayan bir evren düşünebilirim belki; ama doğa yasalarının istatistiksel olduğu görüşüne asla katılamam. Tanrı, zar atarak iş görmez!” diyordu.

Kuantum mekaniğini yetersiz ve geçici sayan çağımızın (belki de tüm çağların) en büyük bilim dehası, kendi yolunda “yalnız” bir yolcuydu; çocukluğa özgü saf ve yalın merakı, evren karşısında derin hayret ve tükenmez coşkusuyla ilerleyen bir yolcu!

Einstein’ın beyni 1955′te otopsisini yapmış olan pataloğun evinde, karton kutu içinde korunuyor. Çok ufak birkaç parçası ise dehalığın kökeni üzerinde çalışan bazı araştırmacılara gönderilmişti.

Gözleri New Jersey’de ölümünden sonra onları saklamak isteyerek çıkartan göz doktoru Henry Abrahamsta bulunuyor.

Einstein, sürekli deldiği için, çözümü hiç çorap giyimemekte bulmuştu. Bu bilgiden, bu büyük adamın tırnaklarını düzenli olarak kesme fikrine zaman kaybı olarak baktığı açıkça anlaşılıyor.

Kadınlar üzerinde olağanüstü bir etkiye sahipti. Hiç tanımadığı kadınlardan gelen ısrarlı evlenme teklifleri ve onun çocuklarını doğurduğunu iddia eden sayısız kadın, son yıllarında bile onu rahat bırakmadı.

Einstein’ın ilk çocuğu olan Lieserl, ilk evlilğinden iki yıl önce dünyaya gelmişti. Lieserl’in kimden olduğu, yaşamı boyunca esrarını korudu. Lieserl yaşasaydı, bugün 96 yaşında olacaktı.

Kariyerine patent memurluğuyla başlayan Einstein, bu süre içinde birçok patentli buluş yaptı. Bunlardan biri de sessiz çalışan buzdolabı idi.

1944′te ateşli bir barış taraftarı olarak Einstein, Amerikan savaş girişimlerine karşı kaynak elde etmek amacıyla özel görecelik konusundaki makalesini çoğaltarak sattı. Kendi el yazısıyla yazdığı makale, müzayedede 6 milyon dolara satıldı.

9 yaşına gelene kadar konuşmada zorluk çekmesi anne-babasının, oğullarının zekâsından şüphe etmesine neden olmuştu. Bu olayların nasıl tam tersine dönebileceği açıklamak açısından ideal bir paradoks örneği olmuştur.

1934′te çocuk öldürmek suçundan hapishanede bulunan Amerikalı Nathan Leopold, Einstein’a hapishaneden bir mektup yazdı ve teorik fizik konusunda bilgi sahibi olmak istediğini söyledi. Einstein da Leopoıld’e bu konuda yararlanabileceği kaynakların bir listesini gönderdi.

 

Joule- James Prescott

James Prescott Joule, (1881–1889). İngiliz fizikçi. Önce kimya derslerini izledi, bununla birlikte çok kendi kendini yetiştirmiş sayılır. Salford’da bir bira fabrikasının müdürü oldu, kısa bir süre sonra bu isi bırakarak kendini tamamen bilimsel çalışmalara verdi. 1841’de bir iletkenden elektrik akımı gedmesiyle açığa çıkan ısıyla ilgili, kendi adını taşıyan kanunları hazırladı. Ertesi yıl, ünlü deneyiyle kalorinin mekanik eşdeğerini belirledi. Zinde kuvvet kavramını ortaya atarak, mekanik enerjinin korunumu ilkesini açıkladı.

Isının mekanik iş ile olan ilişkisini keşfetti. Bu keşif, enerjinin korunumu teorisine ve oradan da termodinamiğin birinci kanunu‘nun eldesini sağladı. SI sistemindeki iş birimi joule, onun adına ithafen verilmiştir. Lord Kelvin ile mutlak sıcaklık skalasını geliştirmiştir. Bir direnç üzerinden geçen elektrik akımının ısı yaydığını bulmuştur (Joule yasası).

Termodinamiğin birinci kanununu keşfeden ünlü bilim adamı Joule, ayrıca bir telde ilerleyen elektrik akımının ürettiği ısıyı hesaplamış ve ilk kez gaz molekülünün hızını bulmuştur. Joule’un en büyük keşfi “mekanik ısı denklemi”ydi. Bu önemli keşif, en temel evrensel bilim kanunu olan “enerjinin korunumu” kanununa da rehberlik etmiştir.

Böylesine önemli bilimsel buluşları olan Joule, tabiat kanunlarını öğrendikçe Allah’ı daha yakından tanıyabileceğine inanan bilim adamlarındandır. Bu inancı onu daha da fazla araştırma yapmaya sevk etmiştir. 1864 yılında Darwin’e karşı bir manifesto imzalayan 717 bilim adamının en önde gelenlerinden olan Joule’ün Allah inancını ifade eden şu sözleri ünlüdür:

Allah’ın isteklerini öğrendikten ve itaat ettikten sonra yapacağımız diğer şey O’nun aklını, gücünü ve iyiliğini yaptığı işlerin kanıtından bilmektir. Tabiat kanunlarını bilmek Allah’ı bilmektir.

 Kendisi, çeşitli formlar kurmuş olan ve temelde: enerji, mekanik, elektrik ve sıcaklık aynı mıdır yoksa değiştirilebilir mi seklinde araştırma yapmış bir İngiliz fizikçidir. Böylece, ilk termodinamik yasa olan enerjinin korunumu yasasını oluşturmuştur. James Prescott Joule, ısı ve enerjinin, tek ve aynı şey olduğunu ve her ikisinin de birbirine dönüşebileceğini gösteren Termodinamik Kanunu’nu bulmuştur. Değerli madenleri ve elektrolizi, gelişmekte olan elektro kimyaya kazandırmıştır. Geliştirmek onun gerçek isi olmuştur.

Romantizm devrimi ve endüstri devriminin dolu dolu olduğu yıllarda James Prescott Joule, zengin bira fabrikalarına sahip olan İngiltere’nin Manchester kentinde dünyaya gelmiştir.

James Prescott Joule, 1818 Aralık’ının 24’ünde Benjamin ve Alice Joule çiftinin dördüncü erkek çocukları olarak dünyaya geldi. ilk iki çocukları Joule doğduğunda ölmüşlerdir. Üçüncü doğumda ki çocukları olan James’in erkek kardeşi, babasının ismi olan Benjamin ismindeydi. Joule’ü, 14 yasında ölen Alice ve Mary olmak üzere iki kız kardeşi izledi. Joule, John adında daha genç bir kardeşe sahipti. Joule’ün babası Benjamin, varlıklı bir adamdı ve Manchester’da, hapishane yanında Bira Fabrikası kurdu. James bunun sonucunda çok yorgun düştü. Onda belkemiğine ait bir sağlık problemi olduğundan; bu rahatsızlığı boyunca ki işlemleri, erkek kardeşi Taylor yaptı.

 Taylor’ın kariyeri at doktorluğu ile başlamıştır. James gençliği boyunca kendini iyi geliştirdi. O, iyi bir gençlik dönemi geçirdi. James’i daha büyük olarak psikolojik rahatsızlıklar etkiledi; bu da onu tamamen utangaç biri yaptı ve topluma karsı konuşmasını etkiledi. James ve onun erkek kardeşi Benjamin hayatlarının erken zamanları olmasına karsın tamamen içlerine kapanık olmuşlardır. James normal bir eğitim almamıştır. Onun yerine; o ve onun erkek kardeşi Benjamin evde özel öğretmenlerden özel ders almışlardır. James 14 yasına kadar evde eğitim almıştır. 14 yasındaki Joule, 16 yasına kadar Manchester Üniversitesinde tedavi edildi. Ondan sonra 1835’de Cambridge’den; John Dalton ile çalışmak, iyi eğitimli bir kimyager olmak, formülleri, atomun bölünmezlik teoremini öğrenmek için ayrılmıştır. Göstergeler, James’in eğitiminin iyi olacağını göstermiştir.

Joule’ün erkenden öğrenmeye başlayıp kendini geliştirmesi, eğitimindeki kazancı kadar babasının bira fabrikasındaki buhar makineleri içinde iyi bir durumdu. O çocukken buhar lokomotiflerine meraklıydı; onun bu merakı onu teşvik etti.

Tarlada termodinamik çalışmaları yaptı. Joule’ün de karıştığı tren kazasında kendisi üç kişiyi öldürdü. Erkek kardeşleri, Joule’ü hızlı ve olağanüstü bir şekilde aldılar. Onlar en sonunda özel öğretmeni Dalton ile görüldüler. Erkek çocuklar, birde onların ölçülü bir şekilde derin bir yer olan “Lake Windemere’de 198 fitte” olduklarını söylediler.

Joule babasının süvari tabancasını kaybederken araştırmalar bir yankı dağda devam ediyordu. Onun sadece silahlarına rastlanmadı; bir başka zamanda onun uçan kaslarına rastlandı. Joule oldukça korktuğu ve de önemsemediği için; sağlık hizmetlerini evinde yaptırırdı. Hizmetçi kız eninde sonunda bilincini kaybedene kadar o dışarıya bir sürü testler taşıdı, bir dizi yığın verdi. James isteyip de başaramadığı deneyin tahsis edilen uç noktasını bitirmek için karar verdi. James babasının bira fabrikasında çalışmakla birlikte denemede ki ilgileri için de yalan söyleyip önce, kendiliğinden olan doğal rezervi oluşturdu. John Dalton, James’e titiz bir deney yapıcı olması gerektiğini aşıladı.

Dalton, genç Joule’ü aritmetik ve geometri öğretmekten çok, az da babasının kimyada ki niyeti ile tanıştırdı. Dalton dikkatli bir yol izledikten sonra teknik yapısı çok yüksek bir laboratuar kullanımında ısrar etti. James, onun eğitimine sahip olduktan sonra geri döndürüldü. Onun bağımsız olarak çalışmasına izin verildi. Babasının evinin içinde var olan laboratuar da araştırma çalışmalarına başladı. James çok fazla ünlü deneysel bilgiyi hocasından öğrenip, kendi beceri ve bilgisi ile birleştirince özgünlük ve ustalık kazandı. Örneğin; James ölçümlü aletlerin bir hassas alet mertebesi doğruluğunu buldu ve de zamanla yaşattı. Bugün bile aletlerin standartlarının doğruluğunun aynı olduğu görülmektedir. Onun tamamen teorik, usta ve dikkatli deneyleri olmuştur.

1847′de Joule Liverpool Gümrük Müdürü’nün kızı olan Amelia Grimes ile evlendi. Joule Alp’ler de çalışırken, balayı’nı için çok zaman harcadı. O suyun üst sıcaklığının, şelalede ki esas su sıcaklığından daha yüksek olduğunu keşfetti. Bu suya düsen enerjinin ısıya dönüştüğünü ispatlamıştır. Bu enerjinin korunucunu ispatlamak için çok büyük bir adımdı. Balayında olup çalışmalarına ara vermesine karsın yürüttüğü deney; tecrübesinin, hobisi Fizik olduğunu ve ondan kopamadığını göstermiştir. Joule, 1849′da Benjamin Artar adında bir erkek çocuğa daha sonra da 1854′te Alice Amelia adında bir kız çocuğa sahip oldu. Joule’ün esi ve ikinci erkek çocuğu 1854′de yaşamlarını yitirmişlerdir.

Joule, 1837’de başlayıp 1856’ya kadar ailesinin bira fabrikasında çalışmıştır. Umudu ve hedefi, ilk araştırmayı yaptığı buharlı motorları(lokomotifleri) elektrik motorları ile değiştirmek ve daha verimli çalışmasını sağlamaktı. Onun incelemeleri üretim ısıtıcıyla ilgiliydi. Joule’ün erken kazançlarından biri tarlada elektrik bulması oldu.

O elektrik motorlarıyla ilgili olarak, elektromıknatıs ve daha çok verimli olan akümülatörü geliştirdi. O yeni bir dergi olan “Annals of Electricty” abone oldu. Redaksiyonu yapan William Sturgeon Joule 20 yasında (1783 -1850)’tır.

İlk dergide, Dorpat Üniversitesi’nden Prof. M. H. Jacobi tarafından; tükenmeyen güç olasılığı için elektrik motorları teklifi yazılmıştır. Onun deneylerinin hedefleri sınırsız güçten düşmeyen bir motordu ve yavaş yavaş farkına varıyordu, onun hedefi başarılamayandı. O ölçümle ilgili çalışmasını tamamlayarak ısıyı elektrikle üretti.

Onun denemesi’nin sunusu olarak Joule keşfedişi: güçlü motor orantılı üründe, güncel ve yoğun batarya seklindeydi. Sonunda Joule çizgisinden çıkarak; buhar makinesi denemesinden vazgeçtiğinden beri çok daha fazla ekonomik oldu. Joule durup durup hissediyordu; buhar makinesini bir gün yenisi olan elektrik motor ile değiştirecekti.

O kördüğüm olan motordan sonra ilgisini elektrik ve ısıya yöneltti. Joule’ün çalışması 1837 ve 1847 yılları arasında büyük bir bölüm oluşturmuştur. Bu zaman boyunca Joule ile birlikte Hermann von Helmholtz, Julius von Mayer ve William Thomson (sonra Lord Kelvin) kurdukları ilke olan: Enerjinin Korunumu’nu devletlerin çıkardıkları bir ilke sonucunda bu isin sonu bitmez diyerek kullanmışlardır.

Daha ciddi birisi denemelerini, Joule’ün kanununa yol göstermek için götürdü. “On the Production of Heat by Voltaic Electricity” dergisi 1840′da “Joule’ün Kanunu” olarak tanımlamıştır. O üretilen ısı miktarını bir teldeki elektrik akımıyla orantılı olarak üründeki, dirençte bulunan tel ve kare akımına başladı. Bunun ilki olarak bir hayli fazla raporlar, formüller kurarak ısıyla ve başka ilkelerle enerjiyi bağlamıştır.

Onun gerek çalışması olan enerji miktarı değeri için bir birim ısı üretmek, adı: mekanikle eşanlamlı ısı olarak 1843′de yayınlandı. O gittikçe doğru yöntemler, önemli belirlemeler kullandı. başka materyaller kullanarak hatta kurulmuş bir ısı enerjine aldırmayarak maddeleri tartıştı. Joule, elektrikle üretilen kimyasal enerji veya mekanik enerji sonucunda: her zaman ısıtılan aynı ısıyı bulmuştur. Joule mekanik enerji
olsaydı ısının hemen üretebilir olduğunu imal etti ve bunu deney yaparak gördü ve de ilk kez elektriksiz olarak bunu basardı. Başarısını hiç enerji kullanmadan, elektrikli, kimyasal ve ye mekanik üretimlerde eşit miktarda ısı deneyleriyle ispatlandı. Deneylerle Joule daha ileriye bir adım gitti ve dört deney geliştirerek tam mekanik eşit ısı belirledi.

Bu plan Joule’ün deneyiyle mekanik enerji arasındaki ilişkiyi gösteriyor(ağırlıklardan düşerek ve şaft etrafında dönerek ve çarkla hareketlerle) ve ısının(su deposunda) nasıl çevrildiğini aydınlatıyor.

Deneyleriyle tanındığında, bir sıcaklık ölçere duyarlı bir şekilde hassas ölçüm yapmak için; ağırlığı yeterli bir fincan düşürerek bir vapur çarkında süren mekanik enerjiyi oluşturdu. Çok dikkatli denemelerle 772 font-pounds buldu; isi her zaman bir fahrenhayt arttırmaktı ve bunun için 1850′ye kadar çalıştı.

O bir de ısının akışkan olmadığını buldu. Herkes tarafından o bulana kadar akışkan olduğuna inanılıyordu ama enerji ilkesi vardı. O çalışması boyunca enerjinin korunduğunu gösterdi. Olası enerjinin korunucunun genel kabulü uğruna, dikkatli deneyler yaptı. Joule ısıda mekanik eşitliği saptadı. Popüler insan olmadı ama kanıtlamaları sonunda, kabul edilmiş ve dünyaca tanınan biri olmuştur. O bütün bunların karşılığında hak talep etmedi; ancak, formüllere Laf of Conservation of Energy sahip çıktı. Yinede, deneyleri temel formülasyon hakkında getiriş oldu. Ek olarak, Joule’ün deneyleri ısının üretilen hareketini gösterdi, kalorik teoriyi yalanladı.

Joule birde 1846′da fenomen mıknatıssal büzülmeyi keşfetti, bunun vasıtasıyla bir demir çubukta ki değişiklikleri boyunda oldukça mıknatıslandığını gördü. Bu sadece akademik zamanda göründü, ama bugünlerde sonuç bağlantıyla ultra-sonic ses dalgası oluşturmada kullanıldı.

Joule, William Thomson ile büyük bir ilişkiye sahipti; onlar her zaman fikirleriyle birbirlerine yardım ederlerdi. Joule’ün her iki deneyinde de geometrik çizim, laboratuar gereçleri, uygulama deneyleri ve teorik kenar deneyinde oldukça iyi olduğu okumalarda gözükür. Ancak onlar birlikte çalışmadan, zihinler için büyük başarılara birleşerek sahip oldular.

Onların azimli bir iş birliğinin sonucu olarak çalışmalarında gaz genleşmeleri zamanında sıcaklığında çağlayan gibi artış oluşmuştur. Bu bilinen “Joule-Thomson Etkisi” dır ve bu etki XIX. yüzyılda büyük soğutma endüstrisi(sanayisi) sırasında kullanılarak gelişmeler kaydedilmiştir.

Bu işbirliği sayesinde araştırmacı zihinler için tamamen yeni özel alanlar ve başka pratik araştırma gün gün oluşmuş ve artış göstermiştir.

Thomson – Joule Reaksiyonu (Boğazda soğutma Deneyi) : Basınçlı hava tüpünün içindeki hava, yüksek basınç altında, açık boğazdan aynı basınç altında aşağıya doğru akarak çevreleyen havaya doğru genleşir.

Boğaz çevresiyle birlikte ısıca yalıtılmış durumdadır. Termometrelerin boğazın açılmasından önce ve sonra ölçtüğü değerler büyük bir fark göstermektedir. Genleşme sırasında hava soğumuştur. Soğukluk artış miktarı boğazdaki basınç farkına eşittir ve havanın başlangıç sıcaklığı düşürüldüğünde artar.

 Birçok araştırmacının da olduğu gibi, Joule’ün yetenekleri bugün “araştırma” dediğimiz şeylerin yanında sınırsızdı. Uygulanabilir cihaz ve yeni teknolojiler deneysel araştırmaların ürünü olarak ortaya çıktıysa; biz bu sorumlulukla James Joule‘e bir mucit de diyebiliriz.

icatlarının arasında “yay” ye da elektrikli kaynak ve yer değiştirme pompası vardır. Onun en değerli şeyi kusursuz düşünebilme yeteneğiydi. çalışmaları kaçınılmaz mantığını kanıtladı. Kariyerinin basında, tam olarak doğrulanmamış çalışmalarına dayanarak yaptığı sonuç taslaklarından dolayı eleştirildi. Ama Joule bu eleştirileri sineye çekti. deneysel kesinliğiyle ünlü olmasıyla birlikte araştırmalarının sonuçlarından ortaya çıkan spekülasyonlara karsı ihtiyatlı biri olarak da tanınırdı. Joule’ün ömrünün son iki yılı evde çoğunlukla okuyarak geçti.

Joule 1850’de kraliyet derneğine seçildi. 1866’da kraliyet derneğinin copley nisanını aldı ve 1872 ve 1887’de İngiliz bilimsel gelişme erneğinin başkanlığını yaptı. Hayatı boyunca biracı olarak kadı ve hiçbir zaman entelektüel bilim dünyasında önemli gibi görünen bir profesör olmadı. O alçakgönüllü ve mütevazı bir insandı, samimiyetle dindar birsiydi, ömrünün sonuna doğru bilimsel buluşların mücadelesinde artan
başvuruların için özlemini duydu.

Joule tek basına çalışarak fidansal desteğe sahip olmamasının birçok yararını ve zararını gördü. Avantajlardan bazıları; çalışma saatlerini kendisinin seçmesi, çalışma sekli ve çalışmanın konusuydu.

Zararlarından bazıları; ihtiyaç duyduğu fidansal desteğe sahip olamaması ve her zaman sahip olmayı hak ettiği araç gerece sahip olamamasıydı.

Joule çok zekiydi ve genelde araç gereç problemini ortadan kaldıracak bir bulusu olurdu ve bazı durumlarda tasarladığı model yerine kullanılacağı araç gereçten çok daha fazla kullanışlı olurdu.

Birçok araştırmasını kendi cebinden karşıladı. Ama maalesef parası 1875’te bitti ve sonraki yıllar sürekli hastalıkla doluydu. 11 Ocak 1889 tarihinde Joule beyin dejenerasyonunun bir türü olan hastalığına daha fazla dayanamadı.

 

Joule’ün imani Yönü: 1864 yılında Darvin’e karsı bir manifesto imzalayan 717 bilim adamının en önemlilerinden biri olan Joule, evrende insanın karsısına çıkan kesiflerin kendisine Allah’ı tanıttığına inanan bilim adamlarından biridir.

Joule bu konu ile ilgili olarak şunları söylemiştir: “Allah’ın isteklerini öğrendikten ve itaat ettikten sonra yapacağımız diğer şey, yaptığı işlerin kanıtından yola çıkarak O’nun aklı, gücü ve iyiliği hakkında bir şeyler bilmektir. Tabiat kanunlarını bilmek, Allah’ı bilmektir. ”

Ömrü boyunca başarılarıyla onurlandı. Termodinamik alanındaki makaleleri çok önemliydi ve ileride bu alanda yapılan çalışmalara çok yardımcı oldu. 1878’de ölümünden kısa bir süre önce, o günün bilimsel çalışmalarda bulunan kişilerden birinin başvuruları sonucunda devletten yaptığı bütün o çalışmalar karşılığında emekli aylığı almaya başladı. Enerjinin birimi, onun büyük çalışmalarından dolayı adıyla anılmaya başlandı. 1J, 1N’luk bir kuvvetle 1m boyunca yapılan ise eşit oldu. 1 J = 1 Nm = 1W s= 1 kgm2 s-2

11 Ocak 1898 Cuma günü aksamı 12 Wardle yolu, Sale adresinde öldü. Bütün hayatı boyunca Manchester bölgesinde yasadı.

1851’de Mariotte kanununu gazların kinetik teorisine dayanarak yorumladı ve gaz moleküllerinin ortalama hızını hesapladı. 1852’de W. Thomson ile birlikte yaptığı araştırmalar sonunda tükel gazlarda boşluk içindedeki adiyabatik genleşmenin sıcaklık değişimi olmadan meydana geldiği (Joule Kanunu), buna karşılık gerçek gazlarda hafif bir soğuma olduğunu (Joule-Thomson Olayı) açıkladı.

1850’de Royal Society’ye üye seçildi; yayımladığı sayısız inceleme yazısı, 1884’te Scientific Papers(Bilimsel Yazılar) baslığı altında derledi.

Joule Kanunu, “tükel bir gazın iç enerjisi yalnız sıcaklığına bağlıdır” seklinde tanımlanan kanundur. Bu kanun, Joule’ün, gazlarda dış etki ve sıcaklık değişikliği olmadan meydana gelen adiyabatik genleşme üstüne yaptığı deneyin sonucudur.

Joule Olayı, homojen bir iletkende, içinden bir elektrik akımının gedmesiyle meydana gelen ısınma; 1882’de William Siemens tarafından teklif edilen bu terim, ingiliz fizikçisi Joule’ün adından alınmış ve bütün bilginlerce benimsenmiştir.

Joule-Thomson Olayı, gözenekli bir çeper arasından basınç değişikliğiyle yayılan bir gazın uğradığı sıcaklık değişimi. Sıcaklığa ve gazın cinsine göre, bu değişiklik soğuma veya ısınma seklinde olabilir,

Joule’ün yaşamındaki önemli tarihler;

1818 – Salford, Lanchashire’da doğdu

1840 – Joule Yasası

1843 – Yapılan isin sonucunda ısı açığa çıktığını kanıtladı

1848 – Gazların kinetik teorisi yayımlandı

1889 – Sale, Chshire’da öldü

 

Niels Bohr

(1885 -1962) Söylentiye göre, Danimarka halkının övünç duyduğu dört şey vardır: gemi endüstrisi, süt ürünleri, peri masalları yazarı Hans Christian Andersen, fizik bilgini Niels Bohr. Bohr, hem bilgin kişiliği, hem insancıl davranışlarıyla, büyük hayaller peşinde koşan gençlere yetkin bir örnek ve esin kaynağı olan bir öncüydü. O, ne Rutherford gibi dış görünümüyle ürkütücü ne de Einstein gibi “arabaya tek başına koşulan at”tı.

Niels, Kopenhag’da görkemli bir konakta dünyaya geldi. Babası üniversitede fizyoloji profesörüydü. Niels çocukluk yıllarında “hımbıl” görünümüyle hiç de parlak bir gelecek vaad etmiyordu. ileride seçkin bir matematikçi olan kardeşi Harald da pek farklı değildi.

İki kardeşin en çok hoşlandıkları şey anneleriyle tramvaya binip kenti dolaşmaktı. Bir keresinde, boş tramvayda anne can sıkıntısını gidermek için olmalı, çocuklara masal söyler. Anlamsız bakışları, sarkık yanakları ve açık ağızlarıyla duran iki oğlanı uzaktan izleyen bir yolcu, “Zavallı kadın, bu iki şapşala bir şey anlattığını sanıyor!” demekten kendini alamaz. Niels Bohr’un bir çocukluk anısı bu.

Oysa Niels’in okul yılları son derece parlak geçer. Babasının entellektüel ilgi alanı genişti: Biri felsefeci, biri dilci ve biri fizikçi üç arkadaşıyla her Cuma akşamı bir araya gelir, düşün dünyasında olup bitenleri tartışırlardı. İki oğlan da bir köşede oturup uzun süren tartışmaları sessizce izlerlerdi. Özellikle Niels’in spekülatif düşünceye yakın bir ilgisi vardı. Nitekim, üniversitede fiziğin yanısıra ilginç bulduğu felsefe derslerini de kaçırmazdı.

Niels Bohr üniversiteyi üstün başarıyla bitirip; yirmi iki yaşında Danimarka Bilim Akademisi’nin altın madalya ödülünü alır. Delikanlının sonradan unutulan bir başarısı da İskandinav dünyasında tanınmış bir futbolcu olmasıydı. Bohr 1911′de doktora çalışmasını tamamlar tamamlamaz J. J. Thomson’la çalışmak üzere Cambridge-Cavendish Laboratuvarı’na koşar. Ancak genç bilimadamı burada umduğunu bulamaz. Herşeyden önce, İngilizce bilgisi yetersizdi; çevresiyle verimli iletişim kuramıyordu.

Sonradan, daha önce Rutherford’un olağanüstü yeteneğini farketmiş olan Thomson, nedense Danimarkalı gence sıradan biri gözüyle bakıyordu. Tartışmalı bir toplantıda Bohr’un ileri sürdüğü bir çözümü Thomson irdelemeksizin yanlış diye geri çevirir; ama daha sonra aynı düşünceyi kendisi dile getirir. Bu olayı içine sindiremeyen Bohr yeni bir arayış içine girer.

Bu sırada bilim dünyasının parlayan yıldızı Rutherford’dur. Katıldığı bir konferansında Rutherford’un coşkusu ve atılım gücüyle büyülenen Bohr, Cavendish’i bırakır, Manchester’de onun ekibine katılır. Rutherford deneyciydi, Bohr ise kuramsal araştırmaya yönelikti. Ama iki bilimadamı arasında başlayan ilişki ömür boyu süren dostluğa dönüşür. Öyle ki, Bohr biricik oğluna hocanın ilk adı “Ernest”i verir. Oysa, bursunun tükenmesi nedeniyle Manchester’de yalnızca altı ay kalabilmişti.

Bohr’un bilimde ilgi odağı atom çekirdeğine ilişkin deney sonuçları değil, kuramsal bir sorundu: Bir elektrik birimi olan elektronun atom kapsamındaki davranışının bilinen fizik yasalarına ters düşmesinin nedeni ne olabilirdi? Normal olarak, pozitif yüklü çekirdeğin çevresinde dönen negatif yüklü elektronun, devinim sürecinde, elektromanyetik radyasyon salarak enerji yitirmesi ve çekirdeğe gömülmesi; atomun çökmesi gerekirdi.

Max Planck’ın kara-cisim radyasyon katastrofuna benzer bir katastrof! Planck karşılaştığı sorunu E = hf denklemiyle açıklamıştı. Bu sorun da belki kuvantum kavramına başvurularak açıklanabilirdi. Hiç değilse Niels Bohr böyle düşünmekteydi.

Sorun, “spektrum analizi” ya da “spektroskopi” denen konu kapsamındaydı. Bohr “çizgi spektrası”na ilişkin bir formülden nedense habersizdi (Bohr, formülü bir meslekdaşının yardımıyla sonunda öğrenir. Okul ders kitaplarına bile geçen formülün, Bohr’un gözünden kaçmış olması ilginçtir).

Bir aritmetik oyununu andıran işlemi 1885′de Balmer adında İsviçreli bir lise öğretmeni bulmuştu. Buna göre, örneğin, hidrojen spektrumundaki kırmızı çizginin frekansını saptamak için, 3′ün karesi alınır, l bu sayıya bölünür, çıkan bölüm 32. 903. 640. 000. 000. 000 sayısıyla çarpılır. Yeşil çizginin frekansı için işleme 4, mor çizginin frekansı için 5′le başlanır. Balmer, formülünü ortaya koyduğunda hidrojen spektrumunda yalnızca üç çizgi biliniyordu. Sonra bulunan çizgiler için işleme 6, 7, 8, . . . sayılarıyla başlanır.

Bohr 1912′de Kopenhag’a döndüğünde çözüm aradığı problemi birlikte getirmişti. Atomun yapısını açıklamaya çalışan Bohr için Balmer formülü niçin önemliydi? Yanıt basittir: Bohr, Planck sabiti h’yi kullanarak bu formülle enerji kuvantalarından oluşan spektrumu açıklayabileceğini görmüştü.

Başka bir deyişle, formülün sağladığı ipucuyla atomların normalde neden enerji salmadığı, elektronların neden hız kaybedip çekirdeğe gömülmediği açıklık kazanmaktaydı. Bohr’un o zaman bilinen fizikle bağdaşmaz görünen görüşü başlıca dört nokta içeriyordu:

(1)  Elektron, olası tüm yörüngelerde değil, yalnız enerjisi Planck sabitiyle bir tam sayının çarpımına orantılı olan yörüngelerde devinir.

(2)  Elektron, enerji değişimiyle kuvantum yörüngelerinin birinden öbürüne geçebilir; ancak çekirdeğe en içteki yörüngeden daha fazla yaklaşamaz.

(3)  Bir kuvantum yörüngede devinen elektron bir iç yörüngeye düşmedikçe radyasyon salmaz. Bu düşüş belli bir miktarda ışık enerjisi üretmekle kalır. Üretilen enerjinin frekansı iki yörünge arasındaki enerji farkının Planck sabitine bölünmesine eşittir: Frekans=Enerji Kaybı/Planck Sabiti

(4) Bir elektronun taşıyabileceği enerjiler sınırlıdır ve bu kesintili enerjiler atomun kesintili çizgi spektrumunda yansır.

Atom yapısının anahtarını, salınan ışığın spektrumunda arayan bu görüşün, birtakım gözlemlere açıklık getirmekle birlikte, doğruluğu kuşku konusuydu. Bir kez aynı gözlemler başka hipotezlerle de açıklanabilirdi. Sonra, elektronların Bohr’un öngördüğü biçimde davrandığını gösteren somut kanıtlar da ortada yoktu henüz. Kaldı ki, kuvantum yörüngeleri düşüncesi olgusal dayanaktan yoksundu.

Bohr’un hipotezi öncelikle hidrojen spektrumunu açıklamaya yönelikti. Gerçi olgusal olarak henüz yoklanmamıştı, ama hipotezin Balmer formülünde yer alan sayının anlamını belirginleştirmesi, geçerliği açısından önemli bir avantaj sağlamaktaydı. Ayrıca, Bohr’un değişik kuvantum yörüngelerinin enerjilerini veren formülü, önerdiği atom kuramına istenen belirginliği kazandırır: 2∏2 me4 /h3

(Formülde m elektron kütlesini, e elektrik yükünü, h Planck sabitini göstermektedir. Bu harflerin deneysel olarak saptanan değerleri formülde yerlerine konduğunda, bir saniyedeki titreşimi gösteren sayı, 32. 903. 640. 000. 000. 000, elde edilmektedir. Barmel’in bulduğu bu sayıya “Rydberg sabiti” de denmektedir).

Bohr oluşturduğu atomun kuvantum kuramını yayımlamadan önce Rutherford’un incelemesine sunmuştu. Rutherford herşeyde basitliği arayan titiz bir kişiydi. Bohr’un yazısı karmaşık, uzun ve gereksiz yinelemelerle doluydu. Rutherford düzeltilmesini gerekli gördüğü noktalara değindikten sonra, “Çalışman gerçekten ilginç; kuramının atoma ilişkin pek çok probleme çözüm getirici nitelikte olduğunu söyleyebilirim”, diyerek genç bilim adamını yüreklendirmişti.

Bohr’un kuramı 1913′de ingiltere’de yayımlanır. Ne var ki, bilimadamlarının bir bölümünün tepkisi olumsuzdur: onlara göre, ortaya konan, bir kuram olmaktan çok rakamlarla oluşturulan bir düzenlemeydi. Oysa, başta Einstein olmak üzere kimi bilimadamları, çalışmanın büyük bir buluş olduğunu farketmişlerdi. Kuramın, spektroskopi biliminin atomik temelini kurduğu çok geçmeden anlaşılır. Bir yandan da kuramı doğrulayan deneysel kanıtlar birikmeye başlar.

Kopenhag Teorik Fizik Enstitüsü başkanlığına getirilen Bohr 1922′de Nobel Ödülü’nü alır. Artık kısaca “Bohr Enstitüsü” diye anılmaya başlayan Enstitü’ye dünyanın pek çok ülkesinden genç fizikçilerin akım başlar (Bunlar arasında Heisenberg, Pauli, Gamov, Landau gibi sonradan ün kazanan genç araştırmacılar da vardı). Kısa sürede dünyanın en canlı bilim merkezine dönüşen Enstitü bir grup üstün yetenekli genç için bulunmaz bir eğitim ortamı olmuştu.

Bohr hem bilgin kişiliği, hem insancıl davranışlarıyla büyük hayaller peşinde koşan bu gençlere yetkin bir örnek, esin kaynağı bir öncüydü. O, ne Rutherford gibi dış görünümüyle sarsıcı, ne de Einstein gibi “arabaya tek başına koşulan at”tı.

Bohr çalışma yaşamında sergilediği istenç gücünün yanısıra neşe ve mizahıyla gönülleri fethetmesini biliyordu. Bir keresinde tartıştıkları bir teori üzerindeki sözlerini şöyle bağlamıştı: “Bu teorinin çılgınca bir şey olduğunu biliyoruz. Ama ayrıldığımız nokta, teorinin, doğru olması için yeterince çılgınca olup olmadığıdır. “

 

ErwIn SchrödInger

Erwin Rudolf Josef Alexander Schrödinger (1887 -1961), Avusturyalı fizikçi. Kuvantum mekaniğine olan katkılarıyla, özellikle de 1933′te kendisine Nobel Ödülü kazandıran Schrödinger Denklemi‘yle tanınır. Schrödinger’in kedisi diye bilinen düşünce deneyini önermiştir.

Çocukluğu ve Gençliği: Schrödinger, Viyana’nın Erdberg ilçesinde, Rudolf ve Georgine Emilia Brenda Schrödinger’in tek çocuğu olarak dünyaya geldi. Babası bir mumlu bez imalatçısı ve botanikçiydi.

1898 yılında girdiği Kraliyet Akademik Lisesi’nden (Akademisches Gymnasium) 1906′da yüksek başarıyla mezun oldu ve aynı yıl Viyana Üniversitesi‘nin fizik bölümüne kabul edildi. Burada, öğretmenleri Franz Serafin Exner ve Friedrich Hasenöhrl’ün fikirlerinden etkilendi, Friedrich Kohlrausch’un gözetiminde deneysel çalışmalar yaptı. 1910′da mezun olan Schrödinger, bir yıllık askerlik hizmetinden sonra üniversiteye geri döndü ve 1911′de Exner’in yanında asistan olarak çalışmaya başladı. 1914′te I. Dünya Savaşı başlayınca tekrar askere çağrıldı ve İtalya cephesine yollandı.

Orta Yaşları: Savaşın bitişinden sonra Viyana’ya dönen Schrödinger, radyoaktif bozunum ve kristal yapıların dinamikleri üzerinde çalışmaya başladı. Mart 1920′de Annemarie Bertel ile evlendi, ve aynı yıl içinde Stuttgart‘ta doçentliğini aldı. 1921′de Breslau Üniversitesi’ne geçti ve burada profesör oldu, fakat Breslau’da birinci yılını doldurmadan bu sefer Zürih Üniversitesi‘ne geçti. Zürih’te geçirdiği altı yıl boyunca renkli görüşün fizyolojisinden termodinamik problemlerine pek çok değişik konu üzerinde çalıştıysa da, atomaltı parçacıkların mekaniği üzerine yazdığı ve 1926′da arka arkaya yayımladığı altı makalesiyle uluslararası üne kavuştu. Bugün kendi adıyla anılan ve kuvantum mekaniğinin en önemli sonuçlarından biri olan Schrödinger Denklemi‘ni de ilk kez bu makalelerde ortaya koydu.

1927′de kısa bir süre ABD‘deki Wisconsin Üniversitesi’nde ders verdikten sonra, Berlin Üniversitesi’ne gelerek fizik bölümü başkanlığını Max Planck‘tan devraldı. Yahudi olmadığı halde, Almanya’da yükselen ırkçı Nazi iktidarından rahatsız olduğu için 1933′te İngiltere’ye taşındı ve Oxford Üniversitesi‘nde profesör oldu. Aynı yıl, Paul Dirac ile beraber Nobel Fizik Ödülü‘nü aldığını öğrendi.

Schrödinger, Oxford’da iki kadınla beraber yaşıyor (karısı Annemarie ve bir başka fizikçiyle evli olan metresi Hilde), bu durum da üniversitede tepkiyle karşılanıyordu. Baskıdan sıkılan Schrödinger, 1934 baharında Princeton Üniversitesi‘nde ders vermeye başladı, fakat buradan gelen iş teklifini, muhtemelen benzer sosyal baskılardan çekindiği için reddetti. 1935′te, bugün Schrödinger’in kedisi adıyla bilinen meşhur düşünce deneyini de içeren üç kısımlı bir deneme yazısı yayımladı.

1936′da memleketi Avusturya’ya dönüp Graz Üniversitesi’nde işe giren Schrödinger, 1938 yılında Naziler’in Avusturya’yı işgal etmesiyle zor bir duruma düştü. Graz Üniversitesi’nin adı Adolf Hitler Üniversitesi olarak değiştirildi ve üniversitenin başına Nazi sempatizanı bir rektör getirildi. Schrödinger, yeni rektörün tavsiyesi üzerine üniversite senatosuna bir mektup yazarak 1933′teki muhalefetini geri çektiğini açıkladıysa da (sonradan bu mektuptan dolayı büyük utanç duyacak ve Einstein‘dan bizzat özür dileyecekti), işini kaybetmekten ve muhalif olarak mimlenmekten kurtulamadı. 1938 sonunda karısıyla beraber apar topar Roma‘ya kaçan Schrödinger, oradan önce Belçika’daki Gent Üniversitesi’ne, sonra da yeni kurulan Dublin İleri Araştırmalar Enstitüsü’ne geçti.

Yaşlılığı ve Ölümü:Dublin’e 1939 sonbaharında gelen Schrödinger, burada 17 sene kalacak ve İrlanda vatandaşlığına geçecekti. 1944′te yazdığı Hayat Nedir? başlıklı kitabında organizmaların genetik şifresini ihtiva eden karmaşık bir molekül fikrinden bahsetti. 1950′lerde DNA molekülünün yapısını çözen (ve bu çalışmalarıyla 1962′de Nobel Tıp ve Fizyoloji Ödülü‘ne layık görülen) Francis Crick ve James Watson ayrı ayrı yazdıkları anılarında, Schrödinger’in kitabından etkilendiklerini açıkça belirtmişlerdir.

Schrödinger Dublin’de kaldığı süre boyunca, fiziğin değişik alanlarını birleştirecek bir “birleşik alan teorisi” kurabilmek için uğraştı ve bu konuda Einstein‘la yazışmaya başladı. 1947′de başarıya ulaştığını zannederek akademik çevrelere ve İrlanda basınına fizikte çığır açacak yeni bir teori geliştirdiğini ilan etti. Ne var ki kısa süre sonra teorisinin hatalı olduğu anlaşıldı. 1954′te yazdığı Doğa ve Yunanlılar adlı kitabında Antik Yunan felsefesi ve bilimiyle ilgili yaptığı araştırmaları anlattı.

Schrödinger’in aşk hayatındaki skandallar İrlanda’da da devam etti. Öğrencileriyle ilişkiler yaşadı, ve iki ayrı İrlandalı kadından iki tane gayrımeşru çocuğu oldu.

1956′da Viyana’ya dönen Schrödinger, birleşik alan teorisi ve genel görelilik kuramı üzerinde çalışmaya devam etti. 1961 yılında yayımlanan son kitabı Dünya Görüşüm’de hinduizm felsefesine oldukça yakın olan kendi dünya görüşünü anlattı.

4 Ocak 1961‘de (73 yaşında) tüberküloz nedeniyle hayata gözlerini yumdu ve vasiyeti üzerine Avusturya’nın batısında bulunan Alpbach kasabasında toprağa verildi.

 

Alexander FrIedman

Alexander Alexandrovich Friedman, 1888-1925 yılları arasında yaşayan Rus fizikçi. Evrenin genişlediğini teorik olarak ispatlamıştır. ayrıca evrenin nasıl son bulacağıyla ilgili üç kuram ortaya atmıştır. Bunlardan biri olan Big Crunch, en olası sonuç olarak görülmektedir.

1922 yılında Alexander Friedmann, zamanla değişen evreni tanımlayan bir kozmoloji modeli olan duragan olmayan evren modelini ortaya atti. Bir Rus matematikçi ve meteorolog olan Friedmann, ise Einstein’in çekim teorisi ile başladı ama homojenlik varsayımını kabul ederken durağanlık varsayımını sorgulamaya açti. Hollandali astronom Wilhelm de Sitter’in de dediği gibi, ne kadar büyük bir teleskopla
bakarsak bakalım evreni görüşümüz bir fotoğraf karesinden başka bir sey değildir, dolayısıyla da evrenin uzun dönemli davranışları konusunda çok az fikir verir. Friedmann, genel görelilik denklemlerinin başka çözümünü buldu. Bu çözüme göre evren, yogunlugu son derece yüksek bir durumdan başlayarak zaman içinde genişliyordu.
Friedmann’in kozmoloji modeline göre ilk patlamadan sonra genişlemeye başlayan evren gittikçe daha dağınık bir duruma geliyordu. Bu kozmoloji modeline ‘büyük patlama’ modeli adi verildi. 1923 yılında Friedmann’in evrimleşen modelinin eleştirisinde Einstein, Friedmann’in hesaplamalarının matematiksel geçerliliğini kabul etmekle birlikte, bunların gerçek evrene uygulanabileceğinden kuşkuda oldugunu bildirdi. Teorik fizikte, başlangıç koşullarına bagli olarak bir denklem setine birden fazla çözüm bulunması oldukça sik rastlanan bir şeydir; bu nedenle Aristoteles, Copernicus ve Newton gibi Einstein da evrenin durağan olduğuna inanmaya devam etti. Bununla birlikte ne Friedmann’in ne de Einstein’in başlangıç varsayımları deneye dayalı olarak sınanabilirdi. O zamanlar her iki görüş doğrultusunda da deneysel kanit hemen hemen yok gibiydi. Einstein ve Friedmann, evren teorilerini kagit üzerinde üretmişlerdir. 1929 yılında durum kökten degisti. O yil, teleskopla gözlem yapan Amerikali astronom Edwin Hubble, evrenin genişlemekte olduğunu keşfetti. Galaksiler sürekli olarak birbirlerinden uzaklaşıyorlardı.

1920′li yıllar, modern astronominin gelişimi açısından çok önemli yıllardı. 1922′de Rus fizikçi Alexandre Friedmann, Einstein’in genel görecelik kuramına göre evrenin durağan bir yapıya sahip olmadığını ve en ufak bir etkileşimin evrenin genişlemesine veya büzüşmesine yol açacağını hesapladı. Friedmann’ın çözümünün önemini ilk fark eden kişi ise Belçikalı astronom Georges Lemaitre oldu. Lemaitre, bu çözümlere dayanarak evrenin bir başlangıcı olduğunu ve bu başlangıçtan itibaren sürekli genişlediğini öngördü. Ayrıca, bu başlangıç anından arta kalan radyasyonun da saptanabileceğini belirtti.

Big Crunch yani Büyük Çöküş: Evrenin nasıl sonlanacağıyla ilgili olan üç kuramdan biridir. Bu üç kuram Rus bilim adamı Aleksandr Friedmann(1888-1925) tarafından 1922 yılında ortaya atmıştır. Big Crunch’a göre evren öyle bir duruma gelecek ki bir daha genişleyemeyecek ve duracak. Sonra da içine çökmeye başlayacak ve ilk konumuna dönecek. Yani yok olacak. Evrenin sonlanmasıyla ilgili en çok olası görülen ve kabul edilen kuram Big Crunch’tır.

Diğer olası sonuçlar: 1. Olasılık, evrenin daha da büyüyeceği ve bütün enerji ve ısının boşlukta emileceği, evrenin enerjisinin tükeneceğidir. Bu durumda evren tamamen ölüdür. 2. Olasılık ise evrenin büyüyemeyecek kadar bir boyuta ulaşıp durmasıdır.

 

EdwIn Hubble

Edwin Powell Hubble, (18891953) ABD’li astronom. Hubble ABD‘de doğup büyüdü. Chicago Üniversitesi’nde hukuk okudu. Önceleri avukatlık yaptı, sonra gökbilime döndü. Yaşamının geri kalan bölümünde Wilson Dağı Gözlemevi‘nde çalıştı. 1923‘te Hubble, Andromeda adı verilen bir gökadayı inceledi. O zamanlar çoğu gökbilimci, bütün evrenin, bizim gökada Samanyolu‘ndan ibaret olduğunu düşünüyordu. Fakat Hubble, Andromeda Gökadası’nın ucunda birtakım yıldızlar gördü ve onların Samanyolu’nun çok ötesinde oldukları tahmininde bulundu. Çalışmaları, Andromeda Gökadası‘nın başka bir gökada olduğunu, dolayısıyla bizimkinin dışında başka gökadaların da var olduğunu kanıtladı. Sonra, o ve başkaları yavaş yavaş birçok gökada saptamaya başladılar. ayrıca Hubble, ışık tayfı konusunu da inceledi. Kızıla kaymanın olabilmesi için, yıldızların bizden uzaklaşmaları gerektiğini fark etti. Gökadalar zayıfladıkça kızıla kaymanın artışı da dikkatini çekti.

Hubble Uzay Teleskobu (HUT), Dünya yörüngesinde bulunan bir teleskoptur. Dünya atmosferinin dışında konumlanması çok soluk objelerin bile net ve keskin optik görüntülerini elde etmesine olanak sağlamaktadır.

1990 yılındaki fırlatılışının ardından, astronomi tarihindeki en önemli teleskoplardan biri haline gelmiştir. Yeryüzüyle ilgili gözlem yapmakla sorumlu teleskop astronomların astrofizik alanındaki temel problemlerine çözüm bulmakta büyük yarar sağlamıştır. Hubble’ın Ultra Derin Alanı (Ultra Deep Field) şu ana kadar çekilmiş en ayrıntılı optik resimlerin çekilmesi için tasarlanmıştır.

Fırlatılışı:1946‘daki orjinal tasarımından fırlatılışına kadar, bir uzay teleskobu inşaası maddi sıkıntılardan ötürü bir türlü gerçekleştirilememiştir. Fırlatılışının hemen ardından, ana aynasının küresel bir sapma yaptığı tespit edilmiş; bu, teleskobun yeteneğine ciddi zarar vermiştir. 1993 yılında gerçekleştirilen bir servis göreviyle, teleskop tamir edilmiş, planlanan kalitedeki görüntüler alınmaya başlamış ve astronomi alanında hayati bir araca dönüşmüştür.

Hubble Uzay Teleskobu; Compton Gama Işınları Gözlemi, Chandra X-ışınları Gözlemi ve Spitzer Uzay Teleskobu projelerinden oluşan NASA’nın Mükemmel Gözlemler serisinin bir parçasıdır. Hubble, NASA ve Avrupa Uzay Ajansı (ESA) arasında ortak bir çalışmadır.

Gelecekte:Hubble Uzay Teleskobu, 30 Ocak 2007 de, ACS,(ana kamera) çalışmasını durdurdu. Onun dengeleme jayraskopunun bir çoğu hali hazırda başaramadı. Jayraskoplar, tekrar yerleştirmek için insanlı servis görevi gerektiren cihazlardır. Bu nedenle cari 2007‘de, onların fazlalıkları tüketildi. Yeteneğindeki diğer bir başarısızlık teleskopu tehlikeye atmaya işaret edebilecek. Ve insanlı servis hizmeti gerekmeksizin onun sadece Ultraviyole kanalı kullanılabilecek. Ek olarak, gücünü artırmadan onun yörünge çapını artırmak, hava direnci Hubble’ın 2010 yılından sonra gelecek bir günde Dünya’nın atmosferine tekrar girmesine neden olacak. İki uydunun yörüngelerinin hayli farklı olmasından dolayı, uluslararası uzay istasyonlarında astronotlar için acil durumlarda barınağa emniyetli geçiş ihtiyacı öncelikli olduğundan; Kolombiya uzay mekiği felaketini takiben NASA Hubble’ı insanlı tamir misyonunun gereksiz bir tehlikeye atılım olacağına karar verdi. Organizasyon, daha sonra bu durumu tekrar muhakeme etti ve 31 Ekim 2006 da NASA yöneticisi Mike Griffin, Hubble’a son bir insanlı görev uçuşunun Atlantis ile yapılmasına yeşil ışık verdi. Bu görev Eylül ayı 2008 için planlandı.

Evrenin genişlemesini kanıtlayan Edwin Hubble’ın adını taşıyan teleskop, 24 Nisan 1990’da uzaya çıkmıştı. 2010 yılına kadar ömür biçilen Hubble uzay teleskobu için Beyaz Saray’dan ödenek çıkmadı.

2010 yılına kadar ömür biçilen Hubble uzay teleskobu için Beyaz Saray’dan ödenek çıkmadı.

Evrenin genişlemesini kanıtlayan Edwin Hubble’ın adını taşıyan teleskop, 24 Nisan 1990’da uzaya çıkmıştı. Hubble dünyaya kontrollü bir şekilde düşürülmesi için NASA bütçesine ufak bir pay ayrılırken, Hubble’ın uzaydaki yerini çok daha gelişmiş bir uzay teleskobu olan James Webb alacak.

1990 yılından bu yana Hubble uzay teleskobu 20 bin hedef gök cismi üzerinde 645 bin gözlem yaptı, dünyanın etrafındaki yörüngesinde 82 bin kere dönerek 3. 2 milyar kilometre yol katetti. Hubble gibi uzay teleskoplarının başlıca özelliği, gözlemlerini atmosferin bulandırıcı etkisi olmadan yapmaları olarak belirtiliyor.

10 büyük keşif:

Hubble uçan teleskopunun yaptığı keşifler, bilimin uzaya bakışında, kozmolojide devrimci değişikliklere yol açtı. Hubble sayesinde bugün artık görünebilir yıldız ve gezegenlerin, evrenin sadece küçük bir bölümünü oluşturduğunu biliyoruz. Güneş sisteminin yalnızca dünyamız ve diğer sekiz gezegenle sınırlı olmadığını da öğrendik.

Hubble teleskopunun en önemli bulgularını içeren aşağıdaki liste, Baltimore Uzay Teleskopu Bilimleri Enstitüsü müdürü Mario Livio tarafından hazırlandı.

1- Evrendeki genleşme süreci hızlanıyor: Ünlü Amerikalı gökbilimci Edwin Hubble’ın gözlemlerinden bu yana, aslında uzayın tıpkı mayalı bir hamur gibi “kabardığı” biliniyordu (Evrenin şişen balon gibi genişlemesi). Fakat astronomlar daha sonraları bu genleşme sürecinin hızlandığını da fark etti. Hubble teleskopu süpernova ölçümleriyle genleşmedeki hızlanmayı kanıtlayabildi. Tahminlere göre karanlık enerjinin bu süreçteki katkısı %65 civarında. Ama astronomlar buna rağmen bu gizli kuvveti kesin bir biçimde aydınlığa kavuşturamadılar.

2- Galaksilerin doğuşu: İlk galaksiler nasıl oluştu, ilk yıldızlar ne zaman doğdu ve neden bu kadar çok farklı galaksi türü var? Hubble teleskopunun ayrıntılı gözlemleri sırasında astronomlar gökyüzünün en karanlık bölgesini kesin bir şekilde inceledi. Uzayın 13 milyar yıllık öncesinde henüz çocukluk dönemlerini yaşayan binlerce galaksi saptadı. Bunlar sanılandan çok daha biçimsizdi ki bu da evrenin ilk dönemlerinde samanyollarının sık sık çarpıştıklarını ve bugünkü galaksilerin de daha küçük galaksilerin birleşmesiyle oluştuklarını gösteriyordu.

3- Hubble sabitesi: Edwin Hubble, cisimlerin dünyamızdan uzaklaştıkça daha hızlı döndüklerini bulmuştu ve bu olay onun adıyla anılan sabiteyle açıklanmakta. Hubble teleskopuyla yapılan gözlemler sayesinde, Hubble sabitesi %15’lik bir hata payıyla belirlendi, Buna göre evrenin genleşme sürecindeki hızlanma dikkate alındığında, ilk patlamadan bu yana 13,7 milyar yılın geçtiği ortaya çıkıyor. Ama bir ihtimalle 100 milyon yıldan az veya çok geçmiş de olabilir.

4- Her yerde kara delik: Bir zamanlar Einstein’ın görelilik kuramıyla ortaya çıkan bir tahmin olan kara delikler bugün artık kozmoloji dünyasının sıradan oluşumları sayılmakta. Son tahminlere göre birçok galaksinin çekirdeğinde dev bir kara delik bulunuyor. Hubble teleskopu çok sayıda kozmik devi görüntülemekle kalmayıp, galaksi üzerindeki bir “çıkıntıya” göre kara deliğin kütlesi hakkında bilgi veren kuralın da hesaplanmasına katkıda bulundu.

5- Güneşötesi gezegenler: Son yıllarda galaksimizin etrafındaki yıldızların çevresinde dönmekte olan yüzden fazla gezegen saptandı. Bunlar daha önceleri merkezi cisimde, kütle çekiminin etkisiyle meydana gelen sapmaların izlenmesiyle dolaylı olarak gözlemlenmişti. Fakat Hubble teleskopu, yıldızının kendisinden önce gözümüzün önünden geçen gezegen türünü de doğrudan doğruya izleyebildi. Hatta transit olarak adlandırılan bu geçiş sırasında yıldızdan yansıyan ışığın, gezegen atmosferinde ne şekilde süzüldüğünü de. Bu gözlem gezegen atmosferi hakkında önemli bilgiler vermekte.

6- Uzaktaki galaksilerde gamma yıldırımları: Gamma ışınları en fazla enerji taşıyan elektromanyetik dalgalar oldukları için uzaydaki en şiddetli oluşumlardan sorumlu olabilirlerdi Ğ ama hangilerinden? Gamma detektörleriyle uzaktaki galaksilerin kaynakları saptanınca merkezlerindeki ışınların kara delikler tarafından üretildiği tahmin edildi. Ancak Hubble teleskopu gamma patlamalarının galaksi kenarlarındaki sönmüş yıldızların çarpışması sırasında da meydana gelebileceğini gösterdi. “Her gamma yıldırımında büyük bir olasılıkla bir kara delik doğmakta” diyor Mario Livio.

7- Gezegenlerin doğuşu: Son yıllardaki gezegen keşiflerinden sonra artık her yıldızın etrafında bir uydunun dönmesi son derece normal bir durum. Hubble teleskopu gezegenler arası maddenin döner bir disk biçiminde yoğunlaşmasını, yani gezegenlerin doğuşunu da izledi. Gerçi bu disklerden ışık yansımıyor ama teleskop, bunları mesela parlak bir yıldız bulutu önünde karanlık lekeler şeklinde görüntüleyebildi.

8- Genç yıldızlardaki “Jetler”: Yıldızların doğuşu karmaşık bir süreçtir- maddenin bir kısmı yoğunlaşırken bir kısmı da düz çizgi şeklindeki “Jetlerle” dışarı atılır. İşte Hubble teleskopu bu jetlerin genç yıldızların merkezinden fırlatıldıklarını saptadı.

9- Yıldızların ölümü: Bir yıldızın ne şekilde yok olacağı her şeyden önce kütlesine bağlıdır- bazıları bir süpernova olarak patlarken, kimileri de demirimsi dev bir çekirdek halinde birleştikten sonra dış kılıflarını atar. Bu kılıf daha sora kızgın bir bulut olarak izlenir. bazı Hubble fotoğraflarında bu bulutların farklı biçimleri var. Astronomlar bunlara “Eskimo bulutsusu”, “Kedigözü” ya da “Kum saati” gibi isimler taktılar. Ancak bunların ne şekilde simetrik biçimlere büründükleri henüz çözülemedi.

10- Beyaz cücelerin soğuyuşu: En eski “yıldız cesetleri” beyaz cücelerdir. Beyaz cüceler, yerküresi büyüklüğünde birleştikten sonra geriye kalan enerjiyi boşaltan sönmüş küçük yıldızlardan meydana gelir. Beyaz cüceler ne kadar yaşlı olurlarsa o derece donuklaşırlar dolayısıyla da izlenmeleri zorlaşır. Hubble teleskopuyla 12-13 milyar yaşında oldukları sanılan birkaç örnek görüntülenebildi. Bu yaş tahmini evrenin yaşıyla da örtüşmekte.  (http://webarsiv. hurriyet. com. tr/2005/05/24/647598. asp)

 

Jean PIaget

Piaget, (18961980) yılları arasında ya­şamış olan İsviçreli ünlü psikolog. Genetik epistemoloji ve bilişsel gelişim alanında çığır açıcı çalışmalar yapmış olan Piaget çocukta düşünce ve dil gelişiminin bir süreklilik içinde değil de, evrelerden ge­çerek oluştuğunu ve birey çevre ilişkilerinde etkin bir şekilde yapılandığını ortaya koy­muştur.

Dış dünyadan yalnızca izlenimler almakla kalmayıp zekasını etkin bir tarzda yapılandıran çocukta bilişsel yapı, Piaget’ye göre, dört evrede gerçekleşir: 1-Duyusal_Motor Dönem(0-2yaş) 2-İşlem Öncesi Dönem(2-5/6yaş) 3-Somut İşlemler Dönemi 4-Soyut İşlemler Dönemi

Piaget ayrıca, çocuk zihniyetinin yetişki­nin zihniyetiyle hiçbir ilişkisi olmadığını öne sürmüştür. Çocuğun mantığı kendine özgü olduğu gibi, ona göre, düşüncesi de benmerkezlidir. O kendisi için gelişir, kendi tarzında eğlenir; aklın kavramsal bilgileriyle ilgisi yoktur, çelişki bilmez. Çocuk ancak başkalarının düşüncesiyle temasa, geçtiği zaman mantıklı olmaya başlar.

Ayrıca gelişim düzeyi kavramını Jean Pİaget’e borçluyuz. Piaget Teorisi olarak bilinen teorisi, herkesin değişmez bazı düzeylerden geçtiğini ve bunların birbirinden ölçülebilir olarak ayrıldığını ortaya koymuştur.

 İnsanın öğrenme sürecinin ve çocuklara özgü, sevimli ancak mantığa aykırıymış gibi görünen kavramların ardındaki giz perdesini araladı. Felsefe ve ruhbilimin öncülerinden sayılan İsviçreli bilim damı.

Jean Piaget, meslek yaşamının büyük bir bölümünü çocukları dinleyip, gözleyerek ve dünyanın her köşesinden bilim adamlarının aynı konuda hazırladıkları raporları inceleyerek geçirdi. Piaget sonuçta, çocukların yetişkinlerden çok farklı düşündüklerini ortaya koydu.

Kendilerini ancak dile getirebilen binlerce yeniyetmeyle yaptığı görüşmelerden sonra, Piaget söz konusu yaş grubunun dışa vurdukları o şirin, ancak mantığa aykırıymış gibi gelen görüşlerinin ardında kendilerine özgü bir düzen ve mantığı olan düşünce süreçlerinin yatabileceği sonucuna vardı. Einstein bunu, “yalnızca bir dahinin akıl erdirebileceği basitlikte bir buluş” olarak nitelendirdi. Piaget’nin ortaya attığı görüş, zekânın özünde yatan işlevlere yeni bir pencere açtı.

10 yaşında yayımladığı ilk bilimsel raporundan 84 yaşında ölümüne dek uzanan, yaklaşık 75 yıllık yoğun bir araştırma süreci sonunda Piaget gelişimsel ruhbilim, bilişsel kuram ve genetik bilgi kuramı (epistemoloji) adı verilen birçok yeni bilim dalının gelişmesine katkıda bulundu.

Eğitim konusunda düzeltimci biri sayılmasa da, Piaget, günümüzde eğitime yeni bir çehre getirilmesini hedefleyen eylemlerin temelini oluşturan çocuk düşünce biçimini su yüzüne çıkarttı. Çağdaş insanbilimcilerinin ortaya attıkları “soylu yabanıllar” ve “yamyamlar” türü öykülere kıyasla, Piaget, çok farklı bir görüş ortaya attı. Bu açıdan ele alındığında, Piaget’nin çocukların düşünce biçimini ilk kez ciddiye alan bir bilim adamı olduğu söylenebilir.

Çocuklara aynı ilgiyle yaklaşan Amerikalı John Dewey, İtalyan Maria Montessorive Brezilyalı Paulo Freire gibi bilim adamları okullarda hemen bir değişime gidilmesi yönünde çok daha yoğun bir çaba harcamalarına karşın Piaget’nin eğitime katkısı çok daha etkili oldu.

Jean Piaget’nin çocukların bilgiyle doldurulacak boş çuvallar olmayıp bilginin etkin yapıcıları oldukları, sürekli olarak kendilerine özgü kuramlar yaratıp bunları sınadıkları yönündeki görüşü kuşaklar boyunca eğitimciler tarafından saygıyla karşılandı.

Freud ya da B. F. Skinner kadar ünlü olmasa da, ruhbilimine katkısı çok daha uzun ömürlü oldu. Bilgisayarlar ve internet çocuklara giderek çok daha geniş kapsamlı sayısal dünyalara ulaşma olanağı tanırken, Piaget’in öne sürdüğü görüşler çok daha belirgin bir önem kazandı.

Piaget, İsviçre’nin Fransız kesimindeki, şarap ve saatleriyle tanınan Neuchatel Bölgesi’nde yetişti. Babası Ortaçağ bilimleri profesörü, annesi ise katı bir Kalvinist idi.

Küçük yaşta doğa bilimleriyle yakından ilgilenen dahi bir çocuktu. 10 yaşındayken gerçekleştirdiği gözlemler yalnızca üniversite kitaplarında açıklamaları bulunabilecek türde çalışmalardı. Kitaplık görevlisinin kendisine bir çocukmuş gibi davranmasına son vermek amacıyla albinoz serçelerin görüş gücü üzerine kısa bir not yayımladı ve amacına ulaştı.

Doktorasını hayvanbilim konusunda yapan Piaget, herhangi birşeyi kavramanın tek yolunun o şeyin nasıl evrildiğinin anlaşılması olduğunu savunan görüşünü ortaya attı.

II. Dünya Savaşı’ndan sonra Piaget, ruhbilimle ilgilenmeye başladı. Zürih’e giderek Carl Jung'un derslerine katıldı, ardından Paris’e giderek mantık ve ruhsal bozukluklar konusunda eğitim görmeye başladı. Alfred Binet’nin çocuk ruhbilimi laboratuvarında Theodore Simonile birlikte çalışan Piaget, aynı yaştaki Parisli çocukların doğru-yanlış seçenekli zekâ testlerinde benzer yanlışlar yaptıklarının ayırdına vardı.

Onların uslama sürecinden son derece etkilenen bilim adamı çocuğun kafa yapısının özüne inilerek insanın öğrenme sürecinin su yüzüne çıkartılabileceğini öne sürdü. Bu arada İsviçreli bilim adamları, çocukları oynarken inceden inceye gözleyip kullandıkları sözcükleri ve sergiledikleri davranış biçemlerim kaydetmeye başladılar.

 

Rüzgâr Nasıl Oluşur?

En tanınmış deneylerinden birinde Piaget, çocuklara “Rüzgâr nasıl oluşur” diye soruyor ve karşılıklı konuşma şöyle sürüyordu:

Piaget: Rüzgâr nasıl oluşur?

Julia: Ağaçlar.

P: Nereden biliyorsun?

J: Onları kollarını sallarken gördüm,

P: Bu nasıl rüzgâr oluşturuyor?

J: (Elini yüzünün önünde sallayarak) İşte böyle. Ama onların kolları daha uzun. Hem daha çok ağaç var.

P: Okyanuslardaki rüzgâr nasıl oluşuyor?

J: Karadan oraya esiyor. Yok, yok. Dalgalardan. . .

Piaget, erişkin ölçütlerine aykırı olmakla birlikte, Julia’nın görüşlerinin “yanlış da sayılamayacağını”, bunların oldukça mantıklı ve çocuğun bilgi edinme sürecine uygun olduğunu gördü. Çocuğun bilgisini sınarken “doğru” ya da “yanlış” biçiminde bir ayrıma gidilmesi olayın tam olarak kavranamaması ve çocuğa yeterince saygı gösterilmemesi demekti.

Piaget’nin amacı, rüzgarla ilgili sohbetten yola çıkarak, çocukların sözel bir açıklama getirmede erişkinler denli becerikli olamadıklarında başvurdukları yöntemlerle ilgili bir kuram oluşturmaktı.

 

Çocuğa Nasıl Davranmalı?

Kendisi bir eğitimci değildi ve böylesi durumlarda nasıl bir tavır takınılması gerektiği yönünde asla kurallar koyma yoluna gitmedi. Gelgelelim, çalışmaları büyüklerin çocuğun davranışlarını hemen düzeltme yoluna gitmelerinin son derece yanlış olabileceğini, onlara kendi kuramlarını oluşturma olanağını tanımanın çok daha yararlı olduğunu ortaya koyuyor.

Piaget bu görüşünü belirtirken, “Çocuklar yalnızca kendi keşfettikleri şeyleri gerçek anlamda kavrayabilirler. Onlara bir şeyleri şipşak öğretmeye kalkıştığımızda, bu şeyleri kendilerinin yeniden keşfetmelerini engellemiş oluruz. ” diyor.

Piaget’in izinden gidenler çocukların, nesnelerin gözden yittiklerinde yok oldukları, ayla güneşin insanı sürekli izlediği, büyük şeylerin yüzdüğü ve küçüklerin dibe çöktüğü türünde ilkel fizik yasalarına sonsuz bir hoşgörüyle yaklaşırlar. Einstein, kendi geliştirdiği görecelik kuramının mantığa aykm gelmesinden olsa gerek, özellikle de Piaget’nin yedi yaşındakilerin daha hızlı gitmenin daha çok zaman aldığı konusunda diretmeleri yönündeki görüşünden çok etkilendi.

Hemen hemen her eğitimci Piaget’nin çocuğun gelişimiyle ilgili olarak öne sürdüğü dört aşamayı (duyumsal devinim, ön-edimsel, somut edimsel ve biçimsel edimsel) ezbere bilse de, onun çok daha önemli görüşleri, belki de eğitimciler tarafından “çok ağdalı” bulunduğu için, pek iyi bilinmez.


Bilgi Kuramı

Piaget asla kendisini bir çocuk ruhbilimcisi olarak görmedi. Onun asıl ilgi alanı, Piaget bu konuya el atıp onu bir bilime dönüştürünceye dek, tıpkı fizik gibi felsefenin bir dalı olarak ele alınan bilgi kuramı idi. Piaget, bilgiye ulaşmanın birden çok yolu olduğunu ve bunların yargılama yoluna gidilmeden bir düşün adamının titizliğiyle incelendiğini öne süren, bir tür göreli bilgi kuramını oluşturdu.

Piaget’den bu yana söz konusu alanın sınırları kadınlara özgü düşünce biçemleri, Afromerkezli düşünce biçemleri, dahası bilgisayara özgü düşünce biçemleri gibi konularla daha da genişledi. Gerçekten de, yapay zekâ ve zekânın bilgi işlem modeli Piaget’e sanıldığından çok daha fazla şey borçludur.

Piaget’nin geliştirdiği kuramın özünde, çocukların bilgiye ulaşma yöntemlerinin derinliklerine inilmesinin genelde bilginin nasıl oluşup geliştiğine ışık tutacağı görüşü yatmaktadır. Bu görüşün gerçekten de bilginin daha iyi kavranmasına neden olup olmadığı ise, Piaget ile ilgili her şey gibi, tartışmalı bir konudur.

Son on yıldır Piaget’nin görüşlerine bilginin beynin içsel bir öğesi olduğu yönünde bir görüşle karşı çıkılıyor. İncelikli deneyler yeni doğan bebeklerin Piaget’nin çocukların oluşturduklarına inandığı bilgilerin bir bölümüne doğuştan sahip olduklarını ortaya koyuyor. Ne var ki, bilişsel kuram alanında Piaget’nin günümüzde de dev konumunu koruduğuna inananlar için, bebeğin doğuşta sahip olduğu bilgi ile erişkinlerin sahip olduğu bilgi arasındaki fark öylesine büyüktür ki, yeni buluşlar bu açığı kapatmak şöyle dursun, olaya daha da gizemli bir boyut kazandırmaktadır.

 

Wolfgang PaulI

1900 yılında Viyana’da doğan Pauli, 1958′de Zürich’te öldü. Avusturya asıllı fakat İsviçreli idi. Münih’te okuduktan sonra 1921 yılında Göttingen’de ve Kopenhag’da asistanlık yaptı. 1928′de Zürich Federal Politeknik okulunda teorik fizik profesörlüğüne tayin edildi. 1940′tan itibaren Princeton’da ders verdi ve 1946 yılında Zürich’e döndü.

Heisenberg ile birlikte manyetik alanların kuvanta teorisini kurdu ve Kopenhag okulunun en ileri, en ünlü temsilcilerinden biri oldu. Pauli ilkesi de denilen ünlü ihraç ilkesini ortaya attı. Sonradan bu ilke, birleşme değerinin yorumuna ve iki cismin aynı anda aynı uzay parçası içinde bulunamayacağı kavramına yol açtı.

1931 yılında Fermi ile nötrinoların varlığını teorik olarak ispatladı. Bu hipotez çok daha sonraları deneysel yoldan ispatlanabildi. W. Pauli 1945 yılında Nobel fizik ödülüne layık görüldü.

Pauli İlkesi, 1924′te ortaya atılan, aynı uzay hücresinde (mesela atom) bulunan spinli taneciklerin gösterdiği bağdaşmazlıklarla ilgili ilkedir. Bu ilkeye göre n herhangi bir tamsayı olmak üzere, spinleri (n + ½) olan özdeş tanecikler aynı enerji seviyesinde bulunamaz. Elektronlar, protonlar, nötronlar Pauli ilkesine uyar.

Bu ilkeden elektronların bir atomun değişik enerji seviyelerindeki dağılışları, enerji seviyeleri arasında mümkün olan geçişler ve taneciklerin uyduğu istatistik hakkında temel sonuçlar çıkarılır. Buna ihraç ilkesi de denir.

 

Dennis Gabor

Macar asıllı İngiliz fizikçisi, 1900 yılında Budapeşte’de doğdu, 1979 yılında öldü. Budapeşte ve Berlin Politeknik okullarında yüksek öğrenimini tamamladı. Sonra Alman teknik araştırma laboratuarında özellikle Berlin Siemens ve Halske firmalarında çalıştı. 1933′de İngiltere’ye gitti çeşitli firmalarda araştırmacı olarak çalıştı.

1949′da Londra’da ki İmperial College of Science adn Technology’de uygulamalı elektronik fizik profesörü oldu. ayrıca Stamford’da ki araştırma laboratuarlarında çalıştı. 1948′de bulduğu ve daha sonra geliştirdiği holografi yöntemiyle 1971 Nobel fizik ödülünü elde etti.

Gabor’un katot osilografisi, manyetik mercekler, gazlarda boşalma ve bilgi kuramı ile ilgili çalışmaları vardır. ayrıca 1963 yılında “Geleceği Yaratalım ” adında bir kitap yazmıştır. Hologram İlkesi: 1947 yılında D. Gabor tarafından ortaya atıldı. Uygulamaya geçişi ancak 1963 yılında başlayabildi. Hologram bir cisim tarafından yayılan veya dağıtılan bir dalganın, bu cisimle ilgisi olmayan ve karşılaştırma dalgası denilen bir dalga ile üst üste gelmesinden doğan girişimleri kaydeden bir fotoğraf plağından meydana gelir.

Bu iki dalganın girişim yapması, bunun için de aynı ışık noktasından çıkması ve kaynağın mümkün olduğu kadar tek renkli olması gereklidir. Bu sebeple tek renkli ve ışık şiddeti yüksek olan lazer, bu yeni teknikte hızlı ilerlemeler sağladı. Bir hologram elde etmek için, bir lazer demeti yarı saydam bir ayna ile ikiye bölünür; aynadan yansıyan ışınlar merceklerden geçmeden, bir fotoğraf klişesini aydınlatır; aynanın içinden geçen ışınlar ise fotoğrafı çekilecek nesnenin üzerine düşer. Nesne bu ışıkların bir kısmını kırar ve kırılan ışınlar da aynı şekilde fotoğraf klişesini aydınlatır. Gelen bu iki demetin fazları aynı değildir ve klişe üzerinde, girişim saçaklarından, çok ince ve küçük bir ağ meydana gelir.

Çıplak gözle incelendiğinde bu saçaklar görülmez. Buna karşılık mikroskopta girişim saçakları görülür. Bu saçakların dağılışı cismin şekline bağlıdır. Fotoğrafın alınması sırasında kullanılan karşılaştırma dalgası ile hologramı aydınlatarak cisim tekrar meydana getirilebilir. O zaman cismin fotoğraf anındaki konumunu tam olarak veren bir görüntü gözlemi yapılabilir. Bunun için hologram yarı saydam bir aynaya çarpan bir lazer demetinin yansıyan kısmıyla aydınlatılır.

Hologramın içine bakılarak aynadan geçen ışınların girişimi sonucunda cismin kabartılı bir görüntüsü elde edilebilir. Burada gerçek bir kabartı söz konusudur; Çünkü gözlemi yapan kişi başını hafifçe oynatarak paralaks etkilerini meydana çıkarır; yani cisim, çıplak gözle görülmesinde olduğu gibi, bir fon üzerinde yer değiştiriyormuş gibidir. Hologramların gerçekleştirdiği cisimler, düzlem cisimler, yani bir fotoğraf emülsiyonu üzerinde maddeleştirilmiş cisimler veya üç boyutlu cisimler olabilir.

Hologramın sayısız uygulamaları arasında en önemlileri, bir yandan hologramların üst üste konulmasıyla hareket halindeki cisimlerin veya bazı cisimlerin küçük şekil değiştirmelerinin meydana çıkarılması, öte yandan hesap makineleri ile harflerin yeniden tanınmasıdır.

 

WERNER HeIsenberg

(1901 -1976) Bilim tarihinde yüzyılımızın ilk çeyreği devrimsel atılımların biribirini izlediği fırtınalı bir dönemdir. Planck’ın kuvantum, Einstein’ın relativite kuramları, Rutherford’un atom modeli bu atılımların başlıcalarıdır.

Bohr’un 1913′de ortaya koyduğu kuvantum atom modeli 1920′lerde özellikle genç fizikçilerin ilgi odağı olmuştu. Ne var ki, bu model sorunsaldı; önemli kimi noktalara ışık tutmakla birlikte yeterince belirgin ve tutarlı olmaktan uzaktı. Üstelik, Bohr’un “kuvantum yörüngeleri” dediği şey için ortada deneysel kanıt da yoktu. Elektronların çekirdek çevresinde döndüğü, güneş sistemine bir benzetme olmakla kalan bir varsayımdı.

Modeli kimi yönleriyle yetersiz bulan genç fizikçilerin başında De Broglie, Pauli, Heisenberg, Schrödinger ve Dirac gibi çalışmalarıyla daha sonra ünlenen seçkin adlar vardı. Bunlar arasında en büyük atılımın Heisenberg’den geldiği söylenebilir.

Heisenberg yirmi dört yaşında iken oluşturduğu matris mekanik ve kendi adıyla bilinen belirsizlik ilkesiyle atom fiziğine yeni bir kimlik kazandırır, 1932′de Nobel Ödülünü alır.

Fizikçi arkadaşları arasında sezgi gücüyle tanınan Heisenberg, daha okul yıllarında, ders kitaplarında yer alan görsel modellere kuşkuyla bakmıştı. Bohr modelini bile pek inandırıcı bulmamıştı. Özellikle modele dayanan varsayımlardan, görsel imgelerden kaçınıyordu. Atom, modellerde işlendiği gibi karmaşık değil, basit bir yapıda olmalıydı. Bohr ile karşılaşmak, tartışmak aradığı bir fırsattı.

Bu fırsat çıktığında delikanlı Münich Üniversitesi’ndeki öğrenimini keserek Göttingen’e koşar. Bohr bir sömestr için Göttingen Üniversitesi’ne konuk öğretim üyesi olarak çağrılmıştı. Atom fiziğinin önde gelen bir kurucusuyla tanışmak kaçırılacak bir fırsat değildi. Heisenberg dikkatli bir dinleyiciydi; ama sırası geldiğinde, doyurucu bulmadığı noktaları belirtmekten, dahası Bohr’u düpedüz eleştirmekten geri kalmıyordu. Bohr bu iddialı gencin olağanüstü yetenek ve coşkusunu farketmekte gecikmez; sömestr sonunda onu Kopenhag Teorik Fizik Enstitüsü’ne katılmaya davet eder.

Üniversiteyi bitirir bitirmez, seçkin genç fizikçilerin toplandığı Enstitü’ye katılan Heisenberg’in sorguladığı temel nokta şuydu: Bohr modelinde öngörüldüğü gibi elektron devindiği yörüngeyi nasıl “seçmekte”, dahası bir başka yörüngeye sıçramadan önce titreşim frekansını nasıl “belirlemekteydi”? Bohr varsaydığı bu davranışı açıklamasız bırakmıştı. Onun yaptığı sadece Planck’ın kuvantum sabitini uygulamaktı.

Bohr’a göre, atomun dengesini koruması, Planck sabitinin enerjiyi sınırlama ve düzenleme etkisiyle gerçekleşmekteydi. Ama bu argüman doyurucu bir açıklama getirmiyordu.

Elektronun çekirdek çevresinde devinen, sıradan bir parçacık olduğu savı da dayanaksızdı. Gerçi Bohr’un atomik olgulara Planck sabitini uygulaması yerinde bir yaklaşımdı; çünkü kuvantum teorisi klasik mekanikten daha yeterli sonuç vermekteydi. Ancak bu teorinin birtakım sorunlar içermediği demek değildi.

Heisenberg varsayımlar ve görsel modeller yerine, doğrudan deneysel verilere dayanan matematiksel bir dizge arayışı içindeydi. Öncelikle kimi saptamaların göz önünde tutulması gerektiğine inanıyordu.

Örneğin, atom içinde kaldığı sürece elektrona ilişkin tahmin ötesinde fazla bir şey bilmediğimiz, ama atom dışındaki davranışına ilişkin elimizde epey deneysel veri olduğu; yine, ivmeli devinen bir elektrik yükü olarak elektronun, elektro-manyetik radyasyon saldığı, salınan radyasyonun frekansının deviniminin yinelenme frekansıyla daima aynı olduğu. (Elektronun radyo antenindeki iniş-çıkış deviniminin frekansının salınan radyasyon frekansıyla aynı olması buna gösterilebilecek bir örnektir. ); öyleyse, elektronun atom içinde de ivmeli devinen bir elektrik yükü olduğu koşuluyla, radyasyon saldığı, salınan radyasyon frekansının, devinimin yinelenme frekansıyla aynı olduğu söylenebilirdi. Ne var ki, elektronun bir yörüngede devindiği varsayımına göre hesaplandığında bu beklenti doğrulanmamıştır.

Bu türden kimi olumsuz sonuçlar Bohr’u yörüngeler arasında “sıçrama” hipotezine götürmüştü. Buna göre, sıçramada yiten enerji, salınan radyasyonun frekansını belirlemekteydi. Tek elektronlu olan hidrojen atomunda bu beklenti doğrulanmaktaydı. Ama “sıçrama” düşüncesi yörünge varsayımını içeriyordu; oysa ortada yörüngelerin varlığını gösteren hiç bir kanıt yoktu.

Öte yandan, yukarda örnek olarak aldığımız radyo anten olayı da yadsınamazdı. Gerçi Bohr’un teorisine dayanan kimi öndeyilerin bu olaya uyduğu bir durumdan söz edilebilir. Şöyle ki, elektron çekirdekten uzakta, geniş bir yörüngede devindiğinde varsanan sıçrama enerjisi sıfıra yakındır. Atomun dış sınırında elektronun yörüngeyi tamamlama frekansı beklenen sonuca uymakta, yani, yörüngesel frekans radyasyon frekansına eşit çıkmaktadır.

Bohr “karşılık” (correspondence) dediği yöntemiyle atom dışından atom içi spektruma gidilebileceğini göstermişti. Heisenberg yeterince ussal bulmadığı bu yöntem yerine bu gidişi daha mantıksal bir yöntemle gerçekleştirmeyi önermekteydi. Ona göre spektral kod ancak böyle çözülebilirdi.

Heisenberg çözüm için aradığı ipucunu klasik devinim yasalarında bulabileceğini düşünür. Bilindiği gibi, bir gezegenin aldığı yolu belirlemek için, gezegenin belli bir andaki konumunu belirleyen nicelikle momenti (kütle x hız) çarpılır. Öyleyse olasıdır ki, atom düzeyinde de bir frekans çöküntüsüyle bir başka frekans çöküntüsünün çarpımı bize aradığımızı versin!

Ancak Heisenberg’in frekanslara ilişkin ortaya koyduğu simgelerin kullanımı değişik bir çarpım tablosu gerektirmekteydi. Heisenberg farkında olmaksızın “matris cebir” denen bir sistemin kimi kurallarını yeniden keşfetmişti. Hocası Max Born’un yardımıyla aradığı teorinin (kuvantum mekaniğin) matematiksel temelini oluşturmakta artık gecikmeyecekti.

Aslında oluşturulmakta olan yeni sistem, bir bakıma, klasik mekaniği andırmaktaydı; şu farkla ki, klasik mekaniğin simgesel sözlüğü “konum”, “moment” ve devinime ilişkin diğer nicelikleri dile getirirken, yeni mekaniğin simgeleri atomik verileri temsil ediyordu. Matris cebir, klasik mekaniğin yetersiz kaldığı atomik problemlerin çözümüne elveren bir yöntemdi.

Ne var ki, başlangıçta Heisenberg hayal kırıklığına uğramaktan kurtulamaz; yeni yöntemle hidrojen spektrumunu hesaplama başarısız kalmaktaydı. Ama çok geçmeden onu umutsuzluktan kurtaran bir gelişmeyi fark eder. Fizikçi arkadaşı Pauli’nin bulduğu “dışlama” (exclusion) ilkesi geliştirmekte olduğu teoriye önemli destek sağlamaktaydı. (Pauli’nin çalışması atomik spektraya ilişkin gözlemlere dayanıyordu. Bu gözlemler çoğunluk biribirinden farklıydı.

Pauli bu gözlemlerin hepsi için geçerli bir açıklama arayışındaydı. Bulduğu açıklayıcı ilke şuydu: Herhangi bir elementer parçacıklar sisteminde, örneğin, atom kapsamındaki elektron topluluğunda, hiçbir iki parçacık aynı biçimde devinmez, ya da, aynı enerji durumunda olmaz. )

Bu basit ilke yalnız elektronlar için değil, ilerde keşfedilenlerle birlikte atom-altı tüm parçacıklar için geçerliydi. Üstelik bu ilke, Bohr’un atom modelinde bir bakıma elyordamıyla yaptığı bir sınırlamayı (elektron davranışları üzerindeki sınırlamayı) da anlamlı kılıyordu.

“Pauli dışlama ilkesi” diye bilinen buluş Heisenberg’e teorisini tamamlama yolunu açmıştı. Artık, Bohr’un “karşılık” yöntemini yetkin mantıksal bir dizgeye dönüştürebilirdi. Spektral kod çözüm aşamasına ulaşmış, kuvantum mekanik doğmuş demekti. Tam bu sırada beklenmeyen, dahası, şaşkınlık yaratan yeni bir gelişme ortaya çıkar: Avusturyalı fizikçi Erwin Schrödinger matris cebirine başvurmaksızın atomik spektrayı, dalga olayına uygulamaya elveren bir diferansiyel denklemle çözümler. Böylece, klasik fizik yasalarıyla çelişkiye yol açan kuvantum kurallarına gerek kalmadan atomun kesintili enerjisi açıklanabilmekteydi.

Schrödinger’in dalga denklemi, “enerji bölümleri” düşüncesinin fizikte yarattığı uyumsuzluğu gidermeye yeterli görünmekteydi. Kuvantum düşüncesi fiziğin temel ilkelerinden biri olan neden-sonuç bağıntısını dışlamaktaydı; öyle ki, kesin öndeyilere olanak yoktu. Öndeyiler olasılık çerçevesinde yapılabilirdi, ancak. Oysa Schrödinger dalga mekaniğiyle, bu tür sakıncalara yol açmaksızın, atom-altı düzeydeki tüm olguları açıklayabileceği inancındaydı.

Örneğin, dalga mekanik formülü kara-cisim radyasyonuna ilişkin gözlem verilerine Planck formülü ölçüsünde uygun düşmekteydi. Ona göre, madde dalgasal bir olaydı; “elementer parçacık” diye nitelenen şey, aslında, dalgaların biribirini pekiştirdiği küçücük uzay bölgelerinden başka bir şey değildi. Sıçrama fikrine gerek yoktu.

Şimdi yanıtlanması gereken soru şuydu: dalga mekaniği gerçekten fiziği eski bütünlüğüne kavuşturuyor muydu? “Kuvantum” kavramına artık gerek kalmamış mıydı? Bohr ve Heisenberg’e göre buna olanak yoktu. Çünkü elektron ister yörüngede devinen bir parçacık olarak düşünülsün, ister bir dalga titreşimi olarak algılansın, kesintilik gözardı edilemez, sıçrama varsayımından vazgeçilemezdi. Kaldı ki, dalga dilinde bile sıçrama düşüncesinin, üstü örtük de olsa, var olduğu söylenebilirdi.

Öte yandan başta Max Planck, de Broglie olmak üzere kimi fizikçiler Schrödinger’i desteklemekteydi. Bu, de Broglie için doğaldı, çünkü atom fiziğinde dalga düşüncesi ondan kaynaklanmıştı. Oysa, Max Planck öncüsü olduğu kuvantum teorisine ters düşen bir yaklaşıma arka çıkmaktaydı. Ne var ki, Planck yaratılıştan tutucu bir kişiydi; kurduğu teorinin sonraki gelişmelerinde ortaya çıkan “aykırılık”ları, özellikle nedensellik ilkesinden uzaklaşmayı içine sindirememişti. Öyle ki, Schrödinger’e fiziği içine düştüğü bunalımdan kurtaran bir kahraman gözüyle bakıyordu.

Fizik dünyası bir ikilemle karşı karşıyaydı. Bir yanda parçacık kavramına dayanan kuvantum mekaniği, öte yanda parçacık kavramını hiç değilse, dışlayan dalga mekaniği: aynı olgu kümesini açıklamaya yönelik biribirine ters düşen iki teori!

Bu arada, Bohr’un esnek bir tutum içine girerek iki teoriyi bağdaştırma girişimi de ilginçtir. Belki de atomu ve bileşenlerini ne salt parçacıklar ne de salt dalgasal birimler olarak düşünmek doğruydu. Belki de doğru olan, iki teorinin de sınırlı bir geçerliliğe sahip olduğunu söylemekti. Dahası, alternatif açıklamalar getirmeleri, iki teorinin bağdaşmazlığı anlamına alınmamalıydı.

Bohr bu tür olasılıklar üzerinde dururken, Heisenberg iki teori arasında bir uzlaşmaya olanak tanımıyordu. Ona göre atomun dalga yapısını gösteren herhangi deneysel bir kanıt yoktu. Gerçi sıradan deneylerimize aykırı düşen elementer parçacıkları somut maddesel değil, soyut nesneler olarak algılamak yerinde bir yaklaşımdır. Ancak, bu soyut nesnelerin davranışlarını betimlemede birtakım varsayımlara değil, ölçülebilir deneysel sonuçlara bağlı kalmak gerekir.

Heisenberg, önerdiği matris mekaniğin bu nitelikte bir dizge olduğu savındaydı. Belli fiziksel bir olgu ya parçacık, ya da, dalga kavramıyla açıklanabilirdi, ikisiyle birlikte değil! Doğa biribirine ters düşen iki kavrama aynı bağlamda elveren bir çelişki ya da karışıklık içinde olabilir miydi?

Sıkıntı bir ölçüde gene Heisenberg’in ortaya koyduğu bir ilkeyle, “belirsizlik ilkesi”yle giderilir. Bu ilke, belli tanımlar arasındaki bir ilişkinin matematiksel türden dile getirilmesidir. Kasaca şöyle demektedir: belli bir anda, konum ve momentin birlikte ölçümünün en az Planck sabiti kadar bir belirsizlik taşıması kaçınılmazdır: ∆p X ∆q ≥ h. Başka bir deyişle, konum ve moment biribirinden bağımsız değişkenler değildir; birini tam belirleme diğerini belirsiz bırakır.

Klasik fizikte ölçülen değişkenler Planck sabitine (h) görecel olarak çok büyük olduğundan öyle bir belirsizlik söz konusu değildir. Oysa atom-altı düzeyde önemli bir sayı olan Planck sabiti (h), bildiğimiz anlamda belirleme kesinliğine olanak vermemektedir. Tüm belirlemeler istatistiksel türden ortalamalar olarak yapılabilir.

Heisenberg’in belirsizlik ilkesi kuvantum mekaniğinin genel bir dizge niteliği kazanmasında anahtar işlevi görür.

Şimdi sorulabilir: Konum ve moment değişkenlerinin eş-zaman ölçümünü olanaksız kılan şey nedir? Bu olayda Planck sabitinin rolü nedir? Daha da önemlisi, belirsizlik ilkesi bilgi arayışının sınırlaması anlamına mı gelmektedir?

Klasik fizikte konum, hız, frekans vb. değişkenler üzerindeki deney ve ölçmelerin bu değişkenleri etkilemediği varsayımına dayanılır. Oysa bu varsayım atom-altı düzey için geçerli değildir. Planck sabitinin çok önemli olduğu bu düzeyde, deneysel araç ve düzenlemelerin ölçmeye konu bu değişkenleri bir şekilde etkilemesi kaçınılmazdır. Orta-boy düzeyde bu etki önemsizdir. Atom-altı düzeyde ise en küçük etki bile çok önemlidir.

Örneğin, bu düzeyde fotoğraf çekiminde salınan ışık, sonucu büyük ölçüde değiştirilebilir. Bu demektir ki, belirleme yöntemimizin etkisi belirlediğimiz nesne veya sürecin ayrılmaz bir parçası olmaktadır. Öyleyse, algıladığımız şey algımız dışında salt nesnel bir gerçekliği yansıtmamaktadır. Peki bunun araştırmaya bir sınır koyduğu söylenebilir mi?

Bu soruyu yanıtlamak için Heisenberg’in belirsizlik ilkesinin anlamını iyi kavramak gerekir. Atom-altı düzeyde ilişkilerini nedensel olarak belirlemeye çalıştığımız değişkenler (konum, momentum, vb. ) biribiriyle karşılıklı dışlaşma içindedirler. Biri belirlendiğinde diğeri belirsizlik içine düşer. Bu yüzden, yetersiz belirlemeyle yetinmek koşuluyla, bir tür nedensel bir bağıntı kurulabilir. Bir deneyde konum tam saptanırken bir başka deneyde momentin tam saptanması yoluna gidilebilir. Kuvantum mekanikte olasılıklara yönelik istatistiksel belirleme yöntemi matematiksel sembolizmin özünü oluşturmaktadır.

Atom fiziğinde, Heisenberg gibi, görsel model yaklaşımının karşısına çıkan bir başka genç fizikçi de Paul A. M. Dirac’tı. Heisenberg ile Schrödinger’in biribirinden bağımsız atılımlarına bir üçüncüsünü Dirac ekler. Kuvantum mekanikte, klasik mekaniğinin 0t ve p ile simgelediği konum ve momentum nicelikleri yerine frekans çöküşleri konmuştu.

Bu teoride, bildiğimiz aritmetik kurallarının tersine pxq ile qxp aynı şeyler değildi. Çarpımda çarpan ile çarpılanın sırası sonucu değiştirmekteydi. Dirac başlangıçta hemen herkesi şaşırtan bu terslikte, klasik fizik yasalarıyla henüz belirsiz kalan atomik yasalar arasındaki temel farkın ipucunu bulur. Şöyle ki, pxq ile qxp çarpımları arasındaki farkı biliyorsak, ayrıca bu farkın tüm gözlemlerde değişmediği doğruysa, o zaman, klasik mekanikteki herhangi bir denklemi atomik bir denkleme kolayca dönüştürebiliriz.

Bu temel noktaya parmak basan Dirac, aradığı matematiksel aracı “Poisson parantezleri” denen teknikte bulur. Dirac bu tekniği Heisenberg dizgesine uyguladığında, beklentisi doğrultusunda, pxq ile qxp’nin farkını belirler ve bu farkın değişmezliğini saptar. Böylece Poisson parantezleri tekniği kullanılarak herhangi bir klasik denklemin kuvantum mekaniğine ait eşdeğer bir denkleme dönüştürülebileceği gösterilir. Sonuç, klasik mekaniğin yapısal bütünlüğünü kazanan yeni bir mekanik demekti.

Dirac’ın ulaştığı bu sonuca, çok geçmeden, değişik bir yoldan Max Born da ulaşır: Heisenberg ve Schrödinger mekanikleri üzerindeki tartışmalarla çalkalanan fizik dünyası bir üçüncü mekanikle yüzyüze gelir.

Ne var ki, görünümdeki tüm farklara karşın, temelde, üç mekanik eşdeğer nitelikteydi. Örneğin Dirac mekaniğinin de paylaştığı Heisenberg çarpım kuralının Schrödinger mekaniğince de içerildiği söylenebilir.

Bu yakınlığın Dirac’ın attığı yeni bir adımla daha da pekiştiğini görmekteyiz: Dirac özel relativite kavramlarından yararlanarak Schrödinger dalga denklemini değişik bir biçimde ortaya koymayı başarır. Yeni denklem elektronun “spin” denen bir özellik taşıdığını içeriyordu. Eldeki deneysel veriler de öyle bir özelliğin varlığını kanıtlayıcı nitelikteydi. Ancak, Dirac’ın oluşturduğu relativistik dalga mekaniği önemli bir başka savı daha içeriyordu: elektron ve diğer elementer parçacıkların karşıt bir parçacıkla ikiz bir çift olduğu. Ne var ki, “pozitron” denen pozitif elektron ile diğer bazı karşıt parçacıkların kimliği belirleninceye dek, Dirac’ın bu hipotezi ciddiye alınmamıştı.

Şimdi “kuvantum mekaniği” diye bildiğimiz teori, başlangıçta farklı yaklaşımlardan doğan sıraladığımız üç gelişmeyi eşdeğer “versiyon” olarak kapsamında tutmaktadır. Ama hemen belirtmeli ki, kuvantum mekaniği ulaştığı ileri gelişmişlik düzeyine karşın bugün de birtakım “kalıtsal” diyebileceğimiz güçlüklerden yeterince arınmış değildir.

Giderek yoğunlaşan deneysel çalışmalarla toplanan verilerin daha tutarlı ve kapsamlı bir teori gerektirdiği açıktır. Dirac’ın son konuşmalarından birinde belirttiği üzere o çapta kuramsal bir atılım için yeni bir Heisenberg’in gelmesini bekleyeceğiz.

 

EnrIco FermI

(1901-1954) Enrico fermi, İtalyan asıllı Amerikalı bir fizikçidir. 1922 yılında pisa üniversitesinden mezun olmuştur. Lisansüstü çalışmalarında Max Born yönetiminde Almanya’da yapmıştır. 1924 yılında italya’ya dönmüş ve 1926 yılında roma üniversitesinde fizik profesörü olmuştur. Nötron bombardımanı ile radyo aktif transuranyum elementlerinin elde edilmesi ile ilgili çalışmalarından dolayı, 1938 yılında nobel fizik ödülünü kazanmıştır.

Fermi,fizikle ilk olarak 14 yaşında iken, latince eski bir fizik kitabını okuduktan sonra ilgilenmeye başladı. Fermi çok iyi bir hafızaya sahipti. Dante’nin ilahi komedisini ve aristo’nun pek çok eserini ezbere bilirdi. Teorik fizik problemlerini çözmede büyük yeteneğe sahipti. Çok karışık problemleri çözmedeki bu başarısı nedeniyle kendisine kahin gözüyle bakanlar bile vardı. Kendisi aynı zamanda, deneyesel fizik ve fizik eğitiminde büyük beceriye sahipti. İlk amerika seyehatlerinden birinde satın aldığı otomobil bozulunca ,büyük bir üzüntüye düşmüş ve otomobilini en yakın benzin istasyonunda kendisi tamir etmiştir. Bunu gören benzin istasyonu sahibi ona iş teklif etmiştir.

Fermi ve ailesi, 1944 yılında Amerika’ya göç ederek orada amerikan vatandaşı olmuştur. Fermi, Amerika’da önce Colombia Üniversitesine kabul edilmiş sonrada Chicago Üniversitesine profesör olarak atanmıştır. Manhattan projesinin başlatılmasından sonra,fermi zincir reaksiyonun kendi kendine devam edebileceği bir tertibin tasarımı ve imal edilmesinde görevlendirilmiştir.

Söz konusu tertip nötronları, termik hızlarla yavaşlatan grafit blokları ile bir araya getirilmiş uranyum içerecek şekilde Chicago Üniversitesinin bahçesinde kurulmuştur. Nötronları soğurmak ve böylece reaksiyonun hızını kontrol etmek amacıyla, atom piline kadmiyum çubuklar yerleştirildi. Kadmiyum çubuklar yavaş yavaş çekildi ve kendi kendine devam eden zincir reaksiyon gözlendi. Ferminin bu başarısı, dünyada ilk nükleer reaktörün imali ve atom çağının başlangıcı olmuştur. Fermi 53 yaşında iken kanserden öldü. Bir yıl sonra yüzüncü element keşfedildi ve kendisinin onuruna bu element fermium olarak adlandırıldı.

 

Alfred Kastler

(1902-1984) 1902 yılında Guebwiller, Haut-Rhin’de doğdu ve 1984′te öldü. Fransız asıllı fizkçi, 1921′de Ecole Normale Superieure’e girdi. Colmar Lisesi’nde, daha sonra Bordeaux Fen Fakültesi’nde (1931) öğretmenlik yaptı.

1941′de Ecole Normale’in fizik laboratuarına döndü. Orada genç araştırmacıları topladı ve yetiştirdi. Paris Fen Fakültesi’nde profesör, Optik Enstitüsü Konseyi Başkanı, Bilimsel Araştırmalar Milli Merkezi Yönetim Kurulu üyesi oldu. 1958′den sonra atom saati laboratuarını yönetti.

Kastler, bilimsel çalışmalarını, ışık tayf çekimi usulleriyle Hertz dalgalarla tayf çekimi usullerini birleştirerek yeni gelişmeler getirdiği fiziksel optik olayların incelenmesine ayırdı.

Kastler ayrıca kuvanta elektroniğinin ustalarındandır. Özellikle 1950′de yardımcısı Jean Brossel ile ortaya koyduğu bir atom içindeki elektron topluluğunun evirtimini gerçekleştiren bir usulle tanınır; “Optik Pompalama” adıyla bilinen bu usul, cisimlerin fiziksel özelliklerinin incelenmesi için düşünülmüş, sonradan maser amplifikatörleri ve lazer ışını yayıcılarında çok önemli bir uygulama alanı bulmuştur. ayrıca hassas magnetometrelerde ve atom saatlerinde de faydalanılır. Kastler ayrıca G. Bruhat ın “Fizik Üstüne İnceleme” adlı kitabındaki optiğe ayrılmış kısmı yeniden gözden geçirdi ve hataları düzeltti.

 

Charles FRANCIS RIchter

(1900 – 1985) ABD’li jeofizik ve sismoloji uzmanı Charles Richter, yer sarsıntılarının büyüklüğünü ölçmeye yarayan ve adıyla anılan bir ölçek geliştirmiştir.

1920’de Stanford Üniversitesi’nden fizik diplomasını, 1928’de Pasenda’daki California Institute of Technology’den kuramsal fizik doktarasını aldı ve aynı kuruluşun sismoloji laboratuvarında çalışmaya başladı.

1937’de öğretim üyeleri arasına katıldığı Caltech’te 1947’de doçentliğe, 1952’de sismoloji profesörlüğüne getirildi ve 1970’de emekliye ayrılmasına karşın, aynı kuruluşta emeritus profesör olarak çalışmalarını sürdürdü.

Deprem şiddetinin belirlenmesini amaçlayan ilk ölçek, 1883’te İtalyan Jeolog Rossi ile İsviçreli doğabilimci François A. Forel tarafından hazırlanmış ve herhangi bir fiziksel ölçüme göre değil, depremin Yeryüzü’ndeki etkilerine göre belirlenen 10 dereceye ayrılmıştı.

Rossi-Forel ölçeğinden sonra, 1902’de İtalyan Jeolog Giuseppe Mercalli, yine sarsıntının etkilerine göre derecelenmiş yeni bir ölçek yaptı. Uzun süre kullanılan 12 derece şiddetindeki depremin etkileri ise, genel panik, tüm yapıların yıkılması, çatlak ve oyukların açılması, nehirlerin yatak değiştirmesi şeklinde sıralanıyordu.

Her iki ölçek de tanımlayıcı olmakla birlikte, denizlerde ya da yerleşim bölgeleri dışındaki depremlerin şiddetini belirleme olanağı vermiyordu.

Richter’in Alman asıllı ABD’li Sismolog Beno Gutenberg ile birlikte hazırladığı Richter ölçeği ise, yer sarsıntılarının etkisini gözönünde bulundurmaksızın, doğrudan doğruya büyüklüğün ölçümüne dayanır.

Bir sansıntı anında çeşitli bögelere yerleştirilmiş aynı türden sismograflar aracılığıyla, deprem odağının tam üstüne rastlanan Yeryüzü’ndeki dış merkez (episantr) saptanır ve bu merkezden uzaklaştıkça azalan titreşim şiddetinin logaritmik eğrisi çıkartılır.

Ayrıca deprem sırasında açığa çıkan enerji miktarı (E), çizilen logaritmik eğri uyarınca, logE = 11,4 + 1,5 m (m=şiddet) bağıntısıyla erg cinsinden elde edilir. 0’dan 9’a dek derecelendirilmiş olan bu logaritmik ölçekte, örneğin 2 derecelik büyüklük açık ve seçik duyulabilir bir depremi anlatır, 7 derece büyüklüğündeki depremde ise duvarlar çatlar, bacalar devrilir.

 

 

Chen NIng Yang

(1922-) Çin asıllı ABD’li fizikçi Yang, temel parçacıkların zayıf etkileşmelerinde paritenin korunumu yasasının geçerli olmadığını belirlemiştir. 1942’de Kunming’deki Ulusal Güneybatı Birleşik Üniversitesi’nden lisans, iki yıl sonra Tsinghua Üniversitesi’nden yüksek lisans derecesini aldı ve burslu öğrenci olarak ABD’ye gitti. 1948’de Chicago Üniversitesi’nde doktora çalışmalarını tamamlayarak bir yıl Fermi’nin asistanlığını yaptı.

1955’te profesörlüğe yükselen Yang, 1965’ten sonra Stony Brook’daki New York Eyalet Üniversitesi’nde fizik profesörü ve kuramsal Fizik Enstitüsü’nün başkanı olarak görev yapmaktadır. Zayıf etkileşmelerde paritenin (uzayda sağ-sol simetrisinin) korunmadığını ortaya koyan çalışmaları nedeniyle 1957 Nobel Fizik Ödülü’nü Lee ile bölüşmüştür.

İstatistiksel mekanik ve kuantum alan kuramı gibi konularda bilime önemli katkılarda bulunan Yang’a ün ve Nobel Ödülü kazandıran en önemli çalışması, 1956’da Lee ile birlikte pritenin korunumu yasasının zayıf etkileşmeler için geçerli olmadığını göstermesi olmuştur.

O güne değin bütün fiziksel olayların sağ-sol bakışımı (simetrisi) gösterdiği, başka bir deyişle pariteyi koruduğu çok doğal bir ilke olarak kabul edilmiştir. Bu ilkenin geçerli olmasının doğal bir sonucu olarak, bir olayın sağ-sol bakışımlısının, yani “aynadaki görüntüsünün” de geçerli bir fiziksel olay olarak kabul edilmesi gerekiyordu.

O güne değin enerjinin ya da momentumun korunumu ilkeleri gibi evrensel bir geçerliliği olduğu sanılan paritenin korunumunun, o sıralarda yeni bulunmuş olan teta ve tau adlı mezonların bozunmalarında geçerli olmadığını gözlemleyen Yang ve Lee, bu bozunumların tıpkı radyoaktif beta bozunumu gibi zayıf etkileşmeler olduğu gerçeğinden yol çıkarak ve o güne değin yapılmış tüm beta bozunması deneylerini inceleyerek, bunlardan edinilen kuramsal bilgilerin ya da deney çözümlerinde kullanılan varsayımların zayıf etkileşmelerde paritenin korunduğuna ilişkin bir kanıt getirmediğini ortaya koydular.

Bu bulgularını deneysel olarak sınanması için yardım istedikleri Wu’nun, radyoaktif kobalt-60 çekirdeği üzerinde 1957’de gerçekleştirdiği deney de, zayıf etkileşmelerde paritenin korunmadığını kesin kanıtlarıyla doğruladı.

 

Donald Arthur Glaser

(1926-) yılında Cleveland’da doğan Rus asıllı Amerikan fizikçisi Donald Arthur Glaser, Cleveland teknoloji enstitüsünde okudu. Burada öğrenim gördükten sonra 1949 yılında Michigan üniversitesine girdi. Bundan sonra da 1959 yılında Kaliforniya üniversitesine profesör olarak girdi.

Sıvı hidrojenli veya helyumlu kabarcıklar odasını icat etti. Bu alet yüksek enerjili partiküllerin varlığını tespite ve incelemeye yarayan Wilson odasının gelişmiş bir şeklidir. Bununla 1960 Nobel fizik ödülünü kazandı. Bir kabarcığın veya başka bir sıvı içinde yüzen bir sıvı damlasının yüzeyinin bütün noktalarda yüzey gerilimi aynı olduğu için kabarcık veya damla küresel bir şekil alır. Sıvı zarları esnek olduğu için uygun tutucular ve karkaslar kullanılarak damlaya sonsuz değişken şekiller verilebilir.

İçinde, mesela oksijen gibi bir gaz bulunan bir kabarcığı bir elektro mıknatısın kutupları arasına koyarak kabarcığın alacağı şekilden gazın ne çeşitli bir manyetik (para veya diyamanyetik) olduğu anlaşılır. Kabarcıktaki renklenme olayı bir ince tabaka içine girişim olayıdır.

 

Stephen HawkIng

Stephen Hawking (1942, Oxford) İngiliz evrenbilimci. Hawking sekiz yaşındayken, kuzey Londra’dan 20 mil uzaktaki St Albans’a gitti. Onbir yaşında St Albans okuluna kayıt oldu. Buradan mezun olduktan sonra babasının eski okulu Oxford üniversite’si kolejine devam etti.

Hawking’in babasının tıpla ilgilenmesini istemesine karşın, o matematiği seviyordu. Fakat okulun matematik bölümü mevcut değildi. Bu yüzden onun yerine fizik okumaya başladı. Üç yıl sonra doğa bilimlerinde birinci sınıf onur madalyasıyla ödüllendirildi.

Hawking daha sonra Kozmoloji (Evrenbilim) üzerine çalışmak üzere Cambridge‘e gitti. O zamanlar Oxford’da evren bilimi üzerine çalışma yoktu. Cambridge’de Fred Hoyle‘u danışman olarak istemesine karşın Dennis Sciama idi. Doktorasını aldıktan sonra ilk önce araştırma asistanı, daha sonra Gonville and Caius College‘de profesör asistanı oldu. 1973‘de Astronomi Enstitüsünden ayrıldıktan sonra Hawking Uygulamalı matematik ve Kuramsal fizik bölümüne geçti. 1979‘dan sonra matematik bölümünde Lucasian profesörü oldu. Bu profesörlük 1663 yılında üniversite parlemento üyesi olan Henry Lucas tarafından kurulmuştu. İlk olarak Isaac Barrow sonra 1669‘da Isaac Newton‘a verilmişti.

Hawking, evrenin temel prensipleri üzerine çalıştı. Roger Penrose ile birlikte Einstein‘ın Uzay ve Zamanı kapsayan Genel Görelilik Kuramının Big Bang‘le başlayıp karadeliklerle sonlandığını gösterdi. Bu sonuç Kuantum mekaniği ile Genel Görelilik Kuramı’nın birleştirilmesi gerektiğini ortaya koyuyordu. Bu yirminci yüzyılın ikinci yarısının en büyük buluşlarından biriydi. Bu birleşmenin bir sonucuda karadeliklerin aslında tamamen kara olmadığını, fakat radyasyon yayıp buharlaştıklarını ve görünmez olduklarını ortaya koyuyordu. Diğer bir sonuç da evrenin bir sonu ve sınırı olmadığıydı. Bu da evrenin başlangıcının tamamen bilimsel kurallar çercevesinde meydana geldiği anlamına geliyordu.

Stephen Hawking 1960′ların başında tedavisi olmayan Amyotrofik lateral skleroz hastalığına yakalandı. 21 yaşındayken Charcot (ALS) hastalığı tanısı kondu. Motor nöronların zamanla yüzde seksenini öldürerek sinir sistemini felç eden; ancak beynin zihinsel faaliyetlerine dokunmayan bu hastalık, Hawking’i tekerlekli sandalyede yaşamaya mahkûm etti. Ünlü bilim adamı, 1985 yılından bu yana sesini de yitirmiş olduğu için, koltuğuna yerleştirilmiş, yazıları sese dönüştürebilen bilgisayarı sayesinde insanlarla iletişim kurabiliyor. Kuantum fiziği ve kara deliklerle ilgili iddialarıyla, bugün yaşayan bilim adamları arasında dünyada en çok tanınan isimdir. Kitapları, 40 dile çevrildi; evrenle ilgili çılgın teorik bilgilerini popüler hale getirmek için gereken maddi bağımsızlığı sağlayacak ve Cambridge Üniversitesi’ndeki uygulamalı matematik ve teorik fizik laboratuvarını geliştirecek kadar da sattı. Hawking, hastalığıyla gizemli bir kişilik oluşturmaktadır.

Son kitabı “Ceviz Kabuğundaki Evren”de, dünyanın büyük bir felaket ile karşı karşıya kalabileceğini belirterek uzayda insan kolonileri kurulmasını gündeme getirmiş, bu önerisiyle de ilahiyat profesörü Y. Nuri Öztürk tarafından Dabbetü’l–Arz yani kıyameti haber veren yaratık olarak nitelendirilmişti. Bir fenomen haline gelen ve milyonlarca satan “Zamanın Kısa Tarihi: Büyük Patlamadan Karadeliklere” kitabı, Hawking’e asıl şöhreti getirmişti. İlk kitabının yayımlanmasından bu yana gerçekleşen önemli buluşların ardındaki sırrı açığa çıkaran “Ceviz Kabuğundaki Evren”, “Zamanın Kısa Tarihi”nin bir devamı sayılabilir. Yeni kitabıyla yazar, bizleri çoğu kez gerçeklerin kurmacadan daha şaşırtıcı olduğu teorik fiziğin en üst noktalarına çıkarıyor ve evrenin temel ilkelerine dair anlaşılır yorumlarda bulunuyor. Görelilik kuramından zaman yolculuğuna, süper kütle çekiminden süpersimetriye, kuantum teorisinden M-Kuramı’na ve bütünsel beyin algılanımına kadar evrenin bilinen en kışkırtıcı sırlarına kapı aralayan kitap, Einstein’in “Genel Görelelik Kuramı” ile Richard Feynman’ın çoklu geçmiş düşüncesini birleştirerek evrende olup bitenleri tanımlayabilecek eksiksiz ve tek bir teori geliştirmeye çalışıyor. Okur, kitabı bir bilimsel eser olarak algılayabileceği gibi, rahatlıkla bir bilim–kurgu romanı gibi de değerlendirebilir. Hawking’in “karmaşık önermeleri günlük yaşamdan çekip aldığı analojilerle resmetme becerisi” buna imkan tanımaktadır.

Stephen Hawking, Einstein’dan bu yana dünyaya gelen en parlak teorik fizikçi olarak kabul edilmektedir. 12 onur derecesi almıştır. 1982′de CBE ile ödüllendirilmiş, bundan başka birçok madalya ve ödül almıştır. Royal Society’nin ve National Academy of Sciences (Amerikan Ulusal Bilimler Akademisi (N. A. S. ) ) üyesidir.

Onun birçok kitabından bazıları: The Large Scale Structure of Spacetime, 1973 General Relativity: An Einstein Centenary Survey, 1979 Superspace and Supergravity, 1981 A brief history of time- Black Holes and Baby Universes and Other Essays

Stephen Hawking. . . Einstein’den bu yana dünyaya gelen en parlak teorik fizikçi olarak kabul edilen matematik profesörü.


STEPHEN HAWKING DEN bazı SÖZLER.

“İnsanoğlu, evren tarihinin sadece küçük bir dönemi boyunca varlığını sürdürüyor. Karşılaşacağımız yabancı bir yaşam formu, bize göre çok daha ilkel veya çok daha gelişmiş olabilir. ”

“Embriyoların insan vücudu dışında büyütülmesiyle daha büyük beyinler ve daha gelişmiş bir zeka sağlayacaktır. ”

“Sıradan bir solucanın beyni, günümüzde bilgi-işlem gücü açısından bilgisayarlarımızı geride bırakıyor. ”

“Evrenin genişleme hızı o kadar kritik bir noktadadır ki, Big Bang’ten sonraki birinci saniyede bu oran eğer yüz bin milyon kere milyonda bir daha küçük olsaydı evren şimdiki durumuna gelmeden içine çökerdi. ” 

“Görelilik kuramı mutlak zamanı çöpe attı. Bir çift ikizi düşünelim. Diyelim ki ikizlerden biri dağın tepesinde yaşasın, ötekisi deniz yüzeyinde. İlk ikiz (yani dağın tepesinde yaşayan) ikincisinden daha çabuk yaşlanacaktır. Yani yeniden karşılaştıklarında öbüründen daha yaşlı olacaktır. ” (Stephen Hawking, Zamanın Kısa Tarihi, s. 54)

“Gen mühendisliginin iyi bir iş olduğunu söylemiyorum. Ancak gelecekte, beğenelim beğenmeyelim, (gelecek yüzyıl ya da bin yılda değilse bile) önümüzdeki milyonlarca yıl içinde muhtemelen genetik olarak geliştirilmiş insanlar olacaktır. “

“Gelecek yüzyılda kendimizi yok etmezsek, gezegenlere ve yakın yıldızlara gidebileceğiz. “

“İnsandan daha gelişkin çok üstün canlı türleri varsa niye diğer gökadalara yayılmadılar. . . Veya bizi ziyaret etmeyip de bizi kendi halimize bırakıp başımıza açtığımız dertlere yanmamızı seyredilenler olabilir mi ?. . Daha düşük düzey bir yasam sekline bu denli hürmetkar olabileceklerinden şüphe ederim. “

“Böyle giderse 2 bin 600 yılında dünyada tüm insanlar omuz omuza sıkışık duracaklar. ”

“Günümüzdeki insanlara benzeyen tiplerin yer aldığı Uzay Yolu gibi bilim kurgu filmlere inanmıyorum. İnsanların üzerinde genetik mühendisliğin yasaklanması isteniyor. Ama ben bunun yasaklanabileceğine ihtimal vermiyorum. Ekonomik nedenlerle, hayvanlar ve bitkilerin genleriyle oynanmasına izin verilecek. Ve bir gün biri, insanların genleriyle de oynayacak. Eğer totaliter bir dünyada yaşamıyorsak, bir yerlerde birileri, insanları yeniden yaratarak geliştirmeyi denemesi kaçınılmazdır. . . “

EŞ DEĞİL CANAVAR :Karısı, 210 IQ  ile dünyanın en zeki adamı olan engelli astrofizikçi Steven Hawkings’i küvete batırıyor ve altına kaçırmasını sağlıyordu. Zamanın Kısa Tarihi adlı kitabıyla tanınan ünlü İngiliz astrofizikçi Stephen Hawking’in (64) 11 yıllık karısı Elaine’den fiziksel şiddet gördüğü için boşanacağı haberi tüm dünyada ilgi uyandırdı. Elaine’in (55), 22 yaşından bu yana tekerlekli sandalyeye mahkum ve bilgisayar yardımıyla konuşan Hawking’e inanılmaz işkenceleri ilk kez ortaya çıktı. İngiliz Daily Mail’e konuşan Profesörün eski bakıcısı bir kadına göre Elaine kocasını erkek bakıcısıyla aldatıyordu. Hawking’e lazımlık vermiyor, saatlerce idrarını tutan profesör onlarca insanın içinde altına kaçırıyordu. Banyo sırasında küvete batırıyor dakikalarca suyun altında bırakıyordu. Sandalyesinin tekerlerini kilitleyerek evlerinin bahçesinde saatler güneş altında kalmasını sağlıyor, bilimadamının yüzü yanıklar içinde kalıyordu.

Türkiye’nin Stephen Hawking’i: Spastik olmasına rağmen 3 rakamlı sayıları zihinden çarpabilen, satrançta rakip tanımayan, cep telefonu ve bilgisayarla yazışarak iletişim kuran Adanalı Onur Karadoğan, dünyanın en önemli fizikçilerinden matematik profesörü Stephen Hawking’i örnek alıyor.

ADANA – Zihinsel Yetersiz Çocukları Yetiştirme ve Koruma Vakfı Adana Bahri Özgiray Özel Eğitim Okulunda öğrenim gören, tıp dilinde ‘Serebral Palsi’ olarak adlandırılan spastik engelli Onur Karadoğan (23), güçlüklü kullanabildiği sol elinin baş parmağı ile adeta yaşama bağlanıyor.

Doğum sırasında başının vakumla çekilmesi ve beyne bir süre oksijen gitmemesi nedeniyle spastik dünyaya gelen Onur Karadoğan, alfabeden harf göstererek, bilgisayar ya da cep telefonunu ile yazışarak çevresiyle iletişim kurabiliyor.

Onur Karadoğan, ALS ‘sinirler üzerinden kasların çalışmasını etkileyen hastalık’ nedeniyle tekerlekli sandalyeye mahkum kalan, ilerleyen dönemlerde konuşmada bile zorlanan, buna rağmen çalışmalarını sürdüren dünyanın en önemli fizik kuramcılarından ünlü matematik profesörü Stephen Hawking’i kendisine örnek alıyor.

Eğitim gördüğü okulda ve babasıyla yaşadığı evinde, tüm gününü bilgisayar başında satranç oynayarak, kitap okuyarak ya da yaşam öyküsünü yazarak geçiren Onur Karadoğan, beklentilerini anlatırken, tüm engeline rağmen mutlu olduğunu ifade etti.

En büyük arzusunun, yazılarını sese dönüştürebilen bilgisayar sahibi olmak olduğunu, Stephen Hawking’in de çevresiyle bu şekilde iletişim kurduğunu anlatan Onur Karadoğan, “Onu kendime örnek aldım. Onun gibi yaşam hikayemi yazmakla başladığım amatör yazarlığımı sürdürmek istiyorum. Kim bilir belki tıpkı Stephen Hawking gibi benim kitaplarım da 40 dile çevrilir” dedi.

“HAYATA POZİTİF BAKIŞ” Onur Karadoğan, olaylara her zaman pozitif bakış açısıyla yaklaştığını, çünkü yaşamanın her şeye rağmen güzel olduğunu ifade ederek, şunları kaydetti: “Spastik olmamda küçüklüğümden beri doktor hatası olduğunu bana söylediler. Ancak, ben o doktora hiçbir zaman kin beslemedim. İnanıyorum ki o doktor da benim böyle olmamı istemezdi. Yüreğinde insan sevgisi taşıyan hangi doktor bunu ister ki?”

Emekli öğretmen baba Ahmet Karadoğan ise “Onur, bebek ve çocukluk döneminde tekerlekli sandalyede bile oturamıyordu. Adeta bir külçe yığını gibiydi. Fizik tedavisi sayesinde tekerlekli sandalyede oturmakla kalmayıp, banyo ve tuvalet ihtiyacından çorabını giymeye kadar tüm ihtiyaçlarını kendi görüyor” dedi.

Hiçbir zaman ‘neden benim oğlum böyle’ diyerek isyan etmediğini belirten baba Karadoğan, “Birçok ailenin spastik engelli çocuğunu toplum içine çıkarmaktan utandıklarına tanık oldukça kahroluyorum. Onlar engelli de olsa bizim evladımız. Spastik hiçbir çocuk eğitimden uzak tutulmamalı” diye konuştu.

Onur’un eğitim-öğretimini sürdürdüğü okulun müdürü Gülbin Özçalıcı ise bedensel ve zihinsel engelli çocukları kendi kendilerine yeter hale getirmeye çalıştıklarını belirterek, ailelerin bu olanakları değerlendirmeleri gerektiğini söyledi.

Özürlülerin eğitim-öğretim olanakları sağlanması durumunda kendilerini geliştirebildiklerini ifade eden Özçalıcı, 3 rakamlı sayıları zihinden çarpabilen, satrançta rakip tanımayan, çevresiyle cep telefonu ve bilgisayarla yazışarak iletişim kuran Onur’un buna en iyi örnek oluşturduğunu vurguladı.

Stephen Hawking’in 13 Temmuz’da İran’a geleceğini bildiren Erfei, dünyaca ünlü İngiliz bilim adamının ziyareti sırasında İranlı fizikçilerle görüşeceğini ve konferans vereceğini belirtti.

 

This entry was posted on Pazartesi, Ağustos 4th, 2008 at 03:51 and is filed under BİLİM. You can follow any responses to this entry through the RSS 2.0 feed. You can leave a response, or trackback from your own site.

Yorum Yaz

  • Takvim

  • Ekim 2014
    Pts Sal Çar Per Cum Cts Paz
    « Tem    
     12345
    6789101112
    13141516171819
    20212223242526
    2728293031